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1 Complexification

Let M™ be a real smooth n-dimensional manifold. Any complex-valued function f &
C>®(M;C) on M can be uniquely expressed as f = u + v where u,v € C*(M;R).
Namely, v and v are given by

u=&ﬁ=%U+%
v=Tmf=(f~7)

Similarly, given a complex-valued vector field Z on M we would like to be able to write
Z = X +1iY for some real-valued vector fields X,Y € I'(M;TM). But this expression
does not make sense because Y (p) € T,M is an element of a real vector space and so
the scalar multiplication 7Y (p) is not well-defined. Thus, in order to make sense of this,
we need to extend the real scalar multiplication on each tangent space T, M to allow for
complex scalar multiplication.

There is a natural way of achieving this. Consider the complex vector space C as
an example. A complex number z = u + v can be identified with an ordered pair
z = (u,v) € RxR. Thus C ~ R x R as a real 2-dimensional vector space. Under the
R-linear isomorphism

C—RxR
u+iv — (u,v)

the product (a + ib) - (u + tv) maps to (au — bv, bu + av). Thus, bringing the complex
structure back into the picture, as a complex vector space C is just R x R with complex
scalar multiplication given by (a + ib) - (u,v) = (au — bv, bu + av), which turns it into a



1-dimensional complex vector space. Then looking at higher-dimensions, any complex
vector z € C" = C x --- x C looks like

2= (21,22, ..., 2n) = ((u1,v1), (U2, v2), ..., (Un,vy)) € R" x R"
which one can identify with the n-tuple of complex numbers
z=(up + vy, ..., Uy +0,) = (ug, ..., upy) +i(v1, ..., 0,) = u+iv

under the aforementioned identification (u,v) = u 4 iv. Once again, the complex scalar
multiplication on C" ~ R"™ x R" is given by

(a+1b) - (u,v) = (au — bv, bu + av).

We can replace R" with any abstract real n-dimensional vector space V' and follow the
same process. Define Ve =V x V as a real 2n-dimensional vector space, and then define
complex scalar multiplication on Vi by

(a+1id) - (u,v) = (au — bv, bu + av).

This turns V¢ into a complex vector space of complex dimension n, called the complex-
ification of V. Thus, for example, C" is the complexification of R".

Fact 1 (Basis for complexification). Let V' be a real vector space with complexification
Ve. If (eq,...,e,) is a basis for V over R, then ((e1,0),...,(e,,0)) is a basis for V¢
over C. Under the identification u + iv = (u,v) this basis is just written as (ey, ..., e,)
again. In particular this means that dimg V' = dim¢ V¢.

Proof. Note that for ¢ = a +ib € C and u € V' we have ¢ - (u,0) = (au, bu) = au + ibu.
Thus if ¢/ = @/ + b’ are some complex scalars for which

n n

0= "0 (es0) = (@ + ) (es.0) = D_(@e;, Ve

J=1 Jj=1

then this implies that ), a’e; = 37 Ve; = 0, which is only possible if o/ =/ = 0 for
all j since {e;} is linearly independent over R. Thus {(e;,0)} is linearly independent
over C. Furthermore, given any w = (u,v) € V¢, we can write

n

n
U= g we; and v = g Ve,
j=1

J=1

for some scalars v/, v’ € R. If we take w’ = u/ + 707 then

n

ij(ej,()) = Z(Ujejavjej) = (u,v)

j=1
which shows that {(e;,0)} is a spanning set for V. This completes the proof. |

In the same way that R is identified with the real axis R x {0} C C, any real vector
space V' can be identified with the real subspace V' x {0} of its complexification V¢.



Fact 2. Let V be a real vector space with complexification Ve. Then V x {0} C V¢ is a
real subspace which is canonically isomorphic to V' (as real vector spaces) under the map

V%VX{O}QV(C
— (u,0)

Thus V x {0} is a canonical copy of V inside Vi, i.e. V is canonically embedded as a
real subspace of V.

Complexification is a nicely behaved procedure in the sense that it defines a functor
from the category of real vector spaces to the category of complex vector spaces. Given
real vector spaces V, W and an R-linear map L : V — W we can extend canonically to
a C-linear map L¢ : Vo — W by defining

L¢(u,v) = (Lu, Lv)
ie. L(u+iv) = Lu+iLv for any u,v € V. This map is indeed complex linear because

Le((a+ib)(u,v)) = Le(au — bv, bu + av)
= (L(au — bv), L(bu + av))
= (aL(u) = bL(v), bL(u) + aL(v))
= (a +1ib)(Lu, Lv)
= (a +ib) L¢(u,v).
Evidently L¢ is uniquely determined by complex linearity plus the fact that it preserves

the two embeddings u — (u,0) and v — (0, v), which is to say that it fits into the two

diagrams
L

V — W V — W
(u, 0)£ j(w, 0) (0, u)j j(o, w)
V(C L—(C> W(C V(c L—@) W(c

Fact 3. If U, V,W are real vector spaces and A :V — W and B : U — V are real-linear
maps, then:

(i) (Ao B)c = Ac o Bc.
(i) A is invertible if and only if Ac is invertible and (A™")c = (A¢)™!

Remark. Henceforth we will identify a real vector space V' with the subspace V' x {0} C
Ve, and so for any u € V we will also write u € V¢ to mean (u,0). Note that this
is consistent with the identification (u,v) = u + iv. Moreover, for any linear map
L:V — W we will also denote the complexification L¢ by L, so for example we will
write L(u + iv) = Lu + iLv.

The usual notions of conjugation, real part, and imaginary part can be applied to
the complexification of any abstract vector space. Given any real vector space V with
complexification Vi, the conjugation operator is given by

Ve — Ve

(Ua U) = W = (U’7 —2})



ie. u+1w = u — . Evidently this map is R-linear but not C-linear. In fact it is
conjugate-linear: for any A € C and w € Ve we have A\-w = X - w. A vector w € V¢ is
called real if w = w. The real vectors are precisely those vectors u € V C V. Given
any vector w € V¢ there are two associated real vectors,

1
Rew = i(w +w) € V C V¢ called the real part of w .

Imw = %(w —w) € V C V¢ called the imaginary part of w .
which satisfy w = Rew + ¢ Im w.

Since complexification is nicely behaved (i.e. functorial) it can be extended imme-
diately from vector spaces to vector bundles. Thus, given a smooth manifold M, we
will be able to complexify each tangent space T,,M and assemble a complexified tangent
bundle, thereby allowing us to multiply tangent vectors by complex scalars. We start by
stating the facts for vector bundles in general. Given a real vector bundle 7 : F — M,
the complexification is the complex vector bundle with total space

Ec = |_| (Ep)(c

peEM
and with the obvious projection map
TC - E(C — M
(p; (u,v)) = p

The local data for the complex vector bundle n¢ : Ec — M is constructed from that of
m: E — M as follows:

(i) Given an open subset U C M and a local trivialization ® : 7=1(U) — U x R* for
E over U, we get a local trivialization ®¢ : 7z'(U) — U x C* for E¢ over U given
by

Oc(z, (u,0)) = (2, Pz, )c(u, v))

i.e. by complexifying the linear isomorphisms on the fibers of £ — M.

(ii) Given two overlapping local trivializations (U, ®) and (V, V) for F with transition
map 7 : U NV — GL(k,R) satisfying

(Pod h)(z,v) = (v, 7(x)v)
we get a transition map 7¢ : U NV — GL(k, C) given by 7¢(z) = 7(x)¢ satisfying

(Te o &g (@, (u,v)) = (2, 7c(x)(u, v))

Thus 7¢ : Ec — M has a unique structure as a smooth rank-k£ complex vector bundle,
with smooth local trivializations given by the maps ®¢ defined above.

Fact 4 (Local frames for complexified vector bundle). Let E — M be a smooth real
vector bundle with complexification Ec — M.



(i) If (o1, ...,0%) is a smooth real local frame for E over U C M, then ((¢1,0),. .., (0k,0))
1s a smooth complex local frame for Ec over U C M.

(1i) If (01, ..., 0k) corresponds to a local trivialization ® for E|y, then ((01,0), ..., (0%, 0))
corresponds to the local trivialization ®¢ for Ecl|y.

Proof. The fact that ((01,0),..., (0k,0)) constitutes a complex local frame for E¢ over
U C M follows immediately from applying Fact 1 pointwise at each p € M to get a
basis for each fiber. Moreover, the smoothness of the local frame will follow from the
smoothness of the local trivialization ®¢, so we just need to show that ((cy,0), ..., (0%, 0))
corresponds to ®¢.

Say (o1, ...,0%) corresponds to a local trivialization ® for E over U, so that

O N(x, (ut, ... ub)) = Zujaj(a;’)

for every « € U. Then ((01,0),...,(0k,0)) corresponds to the complexified local
trivialization ®¢ over U. To see why, consider the inverse map

oot Ux CF = Ecly

Ot (2, w) = (P, )e(w)

where for each x € U we are restricting to the fiber £, and applying the complexified
linear isomorphism

(@E&)C : Ck — (EI)(C
Writing w = u + iv = (ut, v}, ..., u¥ v*) € CF ~ RF x R* we have
O (2, w) = (@] p)e(u,v)
= (@7 (z,u), ®" (2, v))
= (Wo;(x)),v/0;(x))
J

= >0 (05(a),0)

which shows that the local frame ((01,0),...,(0k,0)) corresponds to the local trivializa-
tion (I)(C- |

Fact 5. Let E — M be a smooth real vector bundle with complexification Ec — M.
Then the conjugation operator on fibers extends to a smooth conjugate-linear bundle map
c: Bc — Ec.

Proof. Restricting to a fiber over some p € M we have a conjugate-linear operator

c(p,§) = (p,§)

and gluing these together yields a well-defined conjugate-linear bundle map. In order
to show that ¢ is smooth, it suffices to show that co s € I'(Ec|y) is smooth for every
smooth s € I'(Ec|y). Take a smooth local frame (o',..., %) for E over U and the



induced local frame for ((o1,0),...,(c%,0)) for Ec over U. Then any such s € I'(Ec|y)
can be expressed as
s = Z s’(a;,0)
j
for some smooth component functions s/ € C>(M;C). Then

(cos)(a) =s(z) =Y s7(0;,0) = Y s7(x)(0;(x),0)

J J

where the last equality holds because conjugation is conjugate-linear and the vectors

(0;(x),0) are real. Now if s/ = a’ 4 ib’ is smooth then s7(z) = @’ — it/ is also smooth.
Thus c o s is smooth since it has smooth coefficients in a local frame, and ¢ is a smooth
bundle map. |

Given any local section s € I'(M; E¢) we can write
s(x) = (u(z), v(z)) = u(z) +iv(z) € (Eu)c

for a unique pair of local sections u,v € I'(M; F). Namely

u(z) = Res(x) = £ (s(x) + ()
o(r) = T s(x) = o (s() ~ 5(2)

which are smooth if and only if s is smooth because conjugation is smooth.

Example 1 (Complexified tangent bundle). Let M™ be a smooth manifold. The tangent
bundle of M is the smooth real vector bundle of rank n,

T™ = | |T,M - M

peEM

The complexification of the tangent bundle is the smooth complex vector bundle of rank
n,
TeM = | | (T,M)e - M
peEM

A complex vector field is a section Z € I'(M;Tc M), i.e. a map

Z M — TeM
p— Z,=(XpY,) € (T,M)c =1T,M x T,M
which we also write as Z, = X, + ¢Y,. Thus the complex vector field Z can be written
as Z = X + 1Y for some real vector fields X,Y € I'(M;TM). A complex vector field

acts as a derivation on smooth complex-valued functions: given f = u+iv € C*(M;C)
we have

Z() =X+ u+iw)=(X(u)—Y®)+i(X(v)+Y(u)eC®M;C)



Example 2 (Complexified cotangent bundle). Let M™ be a smooth manifold. The
cotangent bundle of M is the smooth real vector bundle of rank n,

"M = | | ;M — M

pEM

The complexification of the tangent bundle is the smooth complex vector bundle of rank
n7
TeM = | |(TyM)e - M
peEM

A complex 1-form is a section w € ['(M;TEM), i.e. a map

w:M —TeM
prrwy = (ap, By) € (TyM)e =Ty M x TyM

which we also write as w, = o, 4+ i,. Thus the complex 1-form w can be written as
w = a + i for some real 1-forms o, € I'(M;T*M).

Recall that the dual space of a complex vector space H is by definition the complex
vector space H* consisting of complex-linear functionals on H, i.e.

H* = Hom¢(H,C) ={L: H— C: L is C-linear}

Thus for any p € M we have ((T,M)c)* = Home((T,M)c,C). A complex 1-form
w € I'(M;Tg M) is by definition a map w : M — TgM such that w, € (T;;M)c for every
p € M. Note that w, can also be regarded as a linear functional on the complexified

tangent space,
Wy (TpM)(C —C

because we have a natural isomorphism ((7,M)c)" ~ (T;M)c of complex vector spaces.

Fact 6 (Complexification of the dual space). Let V' be a real vector space with complex-
ification V. Then we have a canonical isomorphism of complex vector spaces

Home(Ve, C) = (Vo)* =~ (V¥)e = (Homg(V,R))
i.e. complexification commutes with dualization.

Proof. 1t’s easy to see that the spaces are isomorphic by comparing their dimensions. A
natural isomorphism is also straightforward to describe. An element of (V*)¢ is a pair
(w,n) = w + in where w,n € V* are real-linear functionals V' — R. The pair (w,n) can
be regarded as a C-linear functional on Ve =V x V via

(w,m)(u, ) = (W(u) = n(v),w(v) +n(u))

i.e. by applying the distributive law to (w + in)(u + iv). Thus with this identification we
have (w,n) € Home¢(Ve, C) = (Vi)*. It’s straightforward to check that this is a bijective
correspondence. [



As a consequence, a complex 1-form can be equivalently regarded as a C*°(M; C)-
linear map

w:T(M;TeM) — C*(M;C)
w(Z)(p) = wp(Zp)
The function w(Z) can also be expressed in terms of real and imaginary parts,
w(Z) = (a+if)(X +1Y) = ((X) = B(Y)) + i(a(Y) + 5(X)).

One common way a complex 1-form can appear is as the differential of a smooth
complex-valued function. Say we have a smooth function f : M — C. Then its
differential at p € M is an R-linear map

df, : T,M — C

so that df, € Homg(7,M,C). Note that the latter space of functionals can be regarded
as a complex vector space by defining complex scalar multiplication by

for any real-linear functional ¢ : T,M — C and A € C. Now the real-linear functional
df, yields a complex-linear functional using the following isomorphism:

Fact 7. Let V' be a real vector space with complezification V. Then we have the following
canonical isomorphisms of complex vector spaces:

Homg (V, C) ~ Hom¢(V¢, C)
Proof. Given a real-linear map ¢ : V — C we can “extend” to a map on V¢ by defining
P(u+ iv) = p(u) +ip(v)
Then ¢ is complex-linear because

P((a+ib)(u+ ) = ¢((au — bv) + i(av + bu))
= p(au — bv) + ip(av + bu)
= ap(u) + tbp(u) — bp(v) + iap(v)
= (a +1)(p(u) +ip(v))
= (a4 ib)o(u + iv)

Thus ¢ € Home¢(Ve, C). It’s straightforward to check that this is a bijective correspon-
dence. m

Applying the isomorphism of Fact 7 with V' = T,M we deduce df,, € ((1T,M)c)* for
every p € M and so df € I'(M;T¢M) is in fact a complex 1-form. Now suppose that
f is decomposed into real and imaginary parts f = u + iv. It’s natural to expect that
we should be able to write df = du + idv with real-valued 1-forms du,dv € T'(M;T*M).
This claim warrants some justification, though, because a priori df,, is a complex-linear



functional on (7, M )¢ whereas du, and dv, are real-linear functionals on 7,M. The key
to sorting this out is the isomorphism in Fact 6.
First of all note that for real vectors £ € T,M we certainly have

df, (&) = du,(§) + idv,y(§)

simply by definition of the differential df. Moreover, by the isomorphism of Fact 6,
the pair (du,,dv,) = du, + idv, € (Homg(T,M,R)). is naturally identified with the
complex-linear functional (du,, dv,) € ((1,M)c)* given by
(duyp, dup) (€ + iC) = dup(§) — dup(Q) + i(duy(C) + duy()).
Thus the action of df, € ((1,M)c)* looks like
dfp(g +1¢) = dfp(g) + idfp(o
= duy(&) +idvy(§) + i(dup(C) + idvy(C))

= (duy(§) — dvp(Q)) + i(duy(C) + dup(§))
= (du, + idv,) (€ + ()

We conclude that it makes sense to write df = du+ tdv where du and dv are real 1-forms.

2 Complex local coordinates

Let us first consider the model case C" = R*". The standard coordinates are {z', y!, ... 2™ 3"},
which are global smooth coordinates for R*" as a smooth 2n-dimensional manifold. The

real 1-forms (dz’, dy’)1<;<, constitute a smooth global frame for T*R?". Thus by Fact

4 the 1-forms {(dz?,0), (dy’,0)}1<j<n constitute a smooth global frame for the complex-

ified cotangent bundle T¢R?*". Recall that we write (dz’, dy’) = da’ + idy’, and any
complex 1-form can be expressed as a complex linear combination

Z a;da? + bdy’

j
for some complex functions a;,b; € C*°(R**,C). Consider the complex 1-forms
dz = da? + idyj
d7’ = da? — idy’

The collection {dz?, dz7}, <<, constitutes another smooth global frame for T:R*" because
we can solve for da’, dy’ in terms of dz?, dz’, namely

. 1 ) )
dx! = §(dz] +dz’)
. 1 ) .
dy’ = %(dz] — dz’)
Given a smooth function f: U — C its differential is the complex 1-form given by

df = En: %dmj + ﬁdyj. (1)
1



10

We can also express df in terms of the complex frame,

df =) A;de + B;dz

Jj=1

for some coefficient functions A4;, B; € C*(R?",C). To see what these coefficients are,
we can take equation (1) and replace dx’/ and dy’ with their expression in terms of
complex differentials,

& Of o Of
df—z@dxfjta—yjdyj

8f1
Oz 2

of 1 - -
J =] J =]
—(dz’ +dz’) + Dyl 31 (dz? — dz7)

2
_ of .of f f
-3 ()3 (v i)

Motivated by this calculation, we define the complex coordinate vector fields on R?" as

of 1(0 0 .
5% =3 (5 - 13y ) e TR
of 1[0 0 .
ﬁ‘z(axﬁ ay>€F(TR )

so that df is then given by

When thinking of R*" as a complex manifold of dimension n, the frame {dz’, dz’}
is better because it can be shown that a differential form is holomorphic if it has a
particular structure with respect to this frame. Thus the complex local coordinates
reflect features of the holomorphic structure of a complex manifold.

We recall the definition of local coordinate vector fields on a smooth manifold. Let
M™ be a smooth manifold with ¢ : U C M — R™ any smooth local chart on M, and let

(x,...,2") denote the associated local coordinates. The chart determines coordinate
vector fields 9/0z7 € T(TM|y), 1 < j <n, given by

of 0

Ol Oxd (foo™)

for any smooth function f € C®(U;R). Then (8/dz',...,0/0z™) is a smooth local
frame for T'M over U.

Now suppose M?" is an even-dimensional smooth manifold, so M is locally homeo-
morphic to R?". As before we denote the local coordinates in some chart by {a7, v/ }1<j<n
and then get local frames

J 0 S
= I oduiV *
{8363" oy }1<j<n for TM and {dz’,dy’ }1<j<n for T M.
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Since each (co)tangent space is a copy of R?*", we can follow the above procedure to get
a local frame for the complexified cotangent bundle 77 M,

dz) = dr? +idy’ € T(TEM)
dz! = da’ —idy’ € T(TgM)

and a local frame for the complexified tangent bundle TxM,

0 _1 (i - @i) € I(TeM)

027 2\ Oa’ oy’
0 1 0 .0
55 =1 (5 * i) €T(T)

These are the complex coordinate frames.

Recall that a smooth function f : U C C — C is holomorphic if it satisfies the
Cauchy-Riemann equations. If f(z,y) = u(z,y) + iv(z,y) then the Cauchy-Riemann
equations are

ou Jv Ou ov

dr 9y’ dy Oz

We can express these equations in terms of the complex partial derivative 9/0zZ =
0/0x 4 i0/0y. We calculate

of of _.of

9z O l@y

ou .Ov [(Ou Ov
- (356 Hafv) o ((9y H@y)
Ju Ov (Ou Ov
:(a—x—a—y>“(a—y+a—x)

0
CR equations for f < —{
0z
More generally for a smooth function f: U C C" — C, we say that f is holomorphic
if it satisfies the Cauchy-Riemann equations in each variables z7. Thus we have the

following important characterization.

and thus we see that
0

Fact 8 (Holomorphic functions). A smooth function f:U C C" — C is holomorphic if
and only if

of _

ﬁ =0onU

forevery j=1,...,n.

3 Almost complex structures

Let V be a real vector space. A complex structure on V is a real-linear endomorphism
J : V. — V such that J2 = —I. Evidently J is supposed to be something like a
“multiplication by ¢” operator.



12

Fact 9. Let V be a real vector space and let J : V — V be a complex structure on V.
Then:

(i) V' can be turned into a complex vector space by defining i -v = Jv for anyv € V
and extending linearly, i.e.

(a+1b) - v =av+ bJv
for any v € V. We denote this complex vector space by V.
(1) V has even real dimension dimg V' = 2dim¢ V.

Proof. (i) Note that the definition 4 - v = Jv makes sense because J*> = —I and thus
—v =14%.v = J?v = —v is consistent. It is straightforward to check that complex
multiplication so defined is associative and distributes over addition.

(ii) Say V; has complex dimension n > 1 let {v,...,v,} be any basis for V; over C.
Then any v € V; can be expressed as

n
v = E ijj
j=1

for some complex coefficients ¢; € C, say ¢; = a; + ib;. Then

n

v = Z cjv; = Z(aj +ib;)v; = Zajvj + b;Jv;
j=1

j=1 j=1
and therefore {v,...,v,, Juy,..., Ju,} is a spanning set for V' over R. This set is
also linearly independent over R because {vy,...,v,} is linearly independent over

C. Thus {vy,...,v,, Jvq,...,Ju,} is a basis for V over R.
|

So far we have discussed two ways of turning V' into a complex vector space: V;
(underlying real space V') and V¢ (underlying real space V' x V). It turns out that there
is an important relationship between V; and V. Complexify J to get a complex-linear
map Jec : Ve — Ve satisfying J2 = —I where I now denotes the identity map on V.
Then the eigenvalues of J¢ satisfy A2 = —1 so they are \ = +i.

Fact 10. Let J be a complex structure on a real vector space V' and let Vi denote the
complexification of V.. Then V; and V_; are complex subspaces of Ve, namely

Vy; ~ V' = +1i eigenspace of Jc
V_; ~ V" = —i eigenspace of Jc
and moreover, we have a complete eigenspace decomposition
Ve=Vao V"
whereby any w € Ve decomposes into w = w' + w”, with

1 1
w' = §(w —iJow), w' = §(w +iJew).
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Proof. First we show that V; ~ V', Consider the complex-linear map

Q : VJ — Ve
o) =v—iJv = (v,—Jv)
Note that
Jep(v) = J(v —iJv) = Jv —iJ*0 = Jv +iv = ip(v)

so p(v) € V! C V¢ for every v € V;. Moreover, ¢ is injective, because if v € V; such
that ¢(v) = 0 then v = iJv i.e. Ju = —iv, but v € V; implies that Jv = iv as well. So
Jv = 0 and since J is invertible we have v = 0. Thus ¢ is a complex-linear isomorphism.
A similar argument using the map v — v + ¢Jv shows that V_; ~ V",

Regarding the eigenspace decomposition Ve = V' @ V”: an argument similar to the
above shows that w’ € V' and w” € V", and it’s clear that they satisfy w = w’'+w”. On
the other hand, a nonzero vector cannot be an eigenvector for two distinct eigenvalues
so V'NV” =0 and this completes the proof. [ |

Fact 11. The conjugation operator on Vg interchanges V' and V", thus it defines a
real-linear isomorphism of the underlying real vector spaces, and

1
dim@ V/ = dlm(c V” = 5 dlm(c V@.

Let’s illustrate Fact 10 in the case that V = R?*. The standard basis for R?" is the
set of vectors {X7,..., X, Y1,...,Y,} where

X;=(0,...,1,...,0) (1 1in the jth entry)
Y; =(0,...,1,...,0) (1 in the (n + j)th entry)

and with respect to this basis the standard complex structure is the 2n x 2n matrix

0 —I,
Jon = Ln 0 }

where [, is the n X n identity matrix. Evidently then
JX; =Y;, JY; = -Xj.

Consider the complexification J¢ : (R*")c — (R*")¢ (a complex-linear map between
complex vector spaces of dimension 2n). From Fact 10, the eigenspaces of J¢ are given
by
(R*™) = span{X; —iJX;:1<j<n}=span{X; —iY;:1<j<n}
(R*™)" = span{X; +iJX;: 1 <j<n}=span{X; +iY;: 1 <j<n}
Now suppose M is a smooth manifold of real dimension 2n. For any point p € M we
can take a smooth chart (U, ¢) centered at x € M which affords linear isomorphisms
dg, : T,M = R
(dp)c : (TM)e = (R™)c
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by which we identify
0

1 :
O §(Xj — 1Yj)

a’ Y
p

0
X g, % 5], 5

p
Under this identification, the standard complex structure on R?*" gives us a complex
structure on the tangent space 7, M. Thus we have a decomposition (T,M)c =T, M &
T M where T)M and T)' M are the subspaces spanned by

p }1<j<n

0
1" _
} R TpM = Span {ﬁ
PJ1<j<n

We would like to glue these fiberwise complex structures together to construct
a complex structure on the tangent bundle TM — M, i.e. a smooth real-linear
bundle endomorphism J : TM — TM satisfying J> = —I. Taking a smooth chart
¢:U C M — R®, we should try to define

0
, JR—
T,M = span {_azj

J: TM|U — TM|U

J = D¢ ' o Jpan 0 Do
In order for this to yield a well-defined global endomorphism of 7'M, the endomorphisms
need to agree on the overlap of two different smooth charts (U, ¢) and (V,1) on M.

Thus we need
D¢t o Jpen 0 Dp = Db~ 0 Jgan 0 Dt

on the overlap U N'V. We can rewrite both sides of this equation as follows:

D¢t o Jpen 0 Dp = (Dyp™ 0 Dip) 0 D™ 0 Jgan 0 Do
=Dy~ o (Do Dp™") o Jgzn 0 Do

and on the other side

DipY o Jgen 0 Db = D™t 0 Jgan 0 Dip o (D™t o D)
= Dy o Jgm o (Do D) o Do
Thus we see that, in order for these two expressions to coincide, we need to be able to

commute the complex structure Jg2. with the differential D(z) o ¢~!) of the transition
map, i.e. we need to have

D(o¢™") o Jpen = Jaz 0 D(po ¢7).

If this holds for every pair of overlapping charts on M, then the complex structures
glue together to produce a well-defined global complex structure Jy; : TM — T M. We
will call this the canonical complex structure on T'M because it arises in a natural
way from the smooth structure of M and the standard complex structure of R?*. We
summarize this observation:

Fact 12. Let M be a smooth manifold of real dimension 2n. Then TM admits a
canonical complex structure Jy; : TM — T'M if and only if

D( 0 ¢™) 0 Jase = Jgs 0 D(th 0 67)
for every pair of overlapping charts (U, ¢) and (V,4) on M.
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Remark. A few important remarks regarding terminology.

1. The term “canonical” complex structure in Fact 12 is an important detail. In
general there may be many different complex structures on T'M, and it is possible
for the commutator condition to fail while 7'M admits a complex structure which
is different from the canonical one. Given a smooth manifold M and a complex
structure J on T'M can we determine if it’s canonical? Are there obstructions
against constructing a canonical complex structure on T'M? This is a nontrivial
question in general.

2. A complex structure on T'M is also called an “almost complex structure” on M.
Thus an “almost complex manifold” is a smooth manifold M together with a
complex structure J : TTM — T'M on T'M.

3. A complex manifold is a smooth manifold M equipped with an additional holomor-
phic structure so that the transition maps are holomorphic. This is stronger than
being an almost complex manifold. We will show below that a complex manifold
admits a canonical almost complex structure.

In order to demonstrate the significance of Fact 12 we will need to develop some
basic ideas about the complex differential of a smooth function. Let F' : R® — R™ be a
smooth map and let dF : TR™ — TR™ denote its differential. Its complexification is
the complex-linear bundle homomorphism

DF = (dF)(C : T@Rn — T((;Rm
and we call DF the complex differential of F'.

Fact 13 (Complex differential in coordinates). Let F : R?" — R*™ be a smooth
map. Let {0/027,0/0% }1<j<,, denote the complex coordinate frame for TcR*™ and
{8/0w*, 0/0w*} << the complex coordinate frame for TcR*™. Then the complex
differential is given by:

0 oFF o  OF 0

(8;:]) D27 ouk | 92 o

0 OFF o  OF 0
pr(-2) = _ ,

(ay) D5 ouk | o7 oo

Proof. Say {x7,y’} are standard real coordinates on R** and {u*,v*} are standard real

coordinates on R?™. The corresponding complex coordinates are 2/ = a7 + iy/ and

wk = u* 4 iv® and the complex coordinate frames are

o _1fo 0N 0 _1[f0 0
0z 2\0xd oy ) 0z  2\0xd Oy

o Ao oy o _1(o o
owk 2\ ouk ok )’ owt 2 \duF vk
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Thus we have

0 0 0

ouk  owk  ow
0 _. (9 9
ok \owk  ow”

Writing F' = U 4 4V in complex coordinates, by definition the differential of F' is given
by

IF i B ou* o +8V"3 0
oxi ) OxJ Ouk ~ OxJ Ovk

ou* 8V’“ 0
<8y1) Z oyI Guk Oyl Ovk

Thus by complex-linearity the complex differential is given by

9 out 9 vt 9
DE (%) =200 0wk 9w ook

Now we convert this into the complex coordinate frame on TcR?*™
0 ouk (0 0 ovk (0 0
pE (%) - Z 02 (awk N awk) T (awk N awk)
B Z GU’“ , V’C 0 n ou* B OVEN 0
921+ ouwt "\ 9z 02 ) ot

OF* 0Fk 9
077 8w"f 027 ow"

which is the formula we wanted to establish. The calculation for DF(9/9%z7) is similar.
|

Fact 14. Let U C R?" be an open subset and let F: U C R?" — R?™ be a smooth map.
Then F' is holomorphic as a map F : U C C" — C™ if and only if

DF(p) o Jen = Jem o DF(p) (2)
holds for every p € U.

Proof. First suppose equation (2) holds on U. Then using the complex coordinate frame
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expression for DF' we calculate

0 8

0 oFk 9  9F" 9
- <_ 8_) Jor ( 077 dwk | o aw’f)

aFk ) oF" )
— —iDF el P Jem [
! (az{> oz e (auw>'+ o1 ¢ (aaﬁ)
) oFF 0 9F" 0
— —iDF - A N
! (ay) o7 lowt 07 o
OFt 9 OF 9 §~OFF 9 OF 0
07’ (9w’f 0z ow® p 0z/  owk 07  OwF
_ O 0
- 0z Owk

hence OF*/9z7 = 0 on U for every j, k, which implies that F' is holomorphic.
Conversely, suppose that F is holomorphic. Then 0F*/0z/ = 0 for every j, k and
so the above calculation shows that equation (2) holds when applied to §/9z7. Then
by conjugating everything we find that the equation also holds when applied to 9/927.
Thus (2) is satisfied. u

Applying this fact the transition map F' = 1) o ¢! determined by two overlapping
charts on M, together with Fact 12, we conclude that T'M admits a canonical complex
structure Jy; : T'M — T'M if and only if the transition maps are holomorphic. Thus,
if M is a complex manifold (i.e. a smooth manifold equipped with an additional
holomorphic structure so that the transition maps are holomorphic) then TM admits a
canonical complex structure Jy, : TM — TM.

Corollary 1. Let M be a complex manifold. Then T'M admits a canonical complex
structure Jy : TM — TM.

Let M be a smooth manifold of real dimension 2n with almost complex structure
J :TM — TM. Then we can replicate the eigenspace decomposition from Fact
10 at the level of bundles. Complexifying yields a complex bundle endomorphism
Jo : TeM — TcM with +i-eigenspaces T)M and TM in each fiber, and so we can
define smooth complex subbundles

T'M = | | T)M C TeM — M
peEM
T'M = | | T)M C TcM — M

peEM

T'M is called the holomorphic tangent bundle and T"M the antiholomorphic
tangent bundle.
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Fact 15. Let M?" be a smooth manifold with almost complex structure J : TM —
TM. Let T"M and T" M denote the holomorphic and antiholomorphic tangent bundles
assoctated with J. Then we have a decomposition

TeM =T'M @ T"M.
Proof. The proof is similar to the proof of Fact 10. |

If J is merely an arbitrary almost complex structure on M then this is about all
we can say; however, if J is the canonical almost complex structure induced by a
holomorphic structure on M, then we can also say that the complex local coordinate
frame for TcM splits into two local frames for 7'M and T" M.

Fact 16. Let M be a smooth manifold with canonical almost complex structure Jys :
TM — TM. Let T"M and T" M denote the holomorphic and antiholomorphic tangent
bundles associated with Jy. If {27} are local complex coordinates on M then we obtain
local frames

0 } 0
— for T'M, {—} for T" M.
{82] 1<j<n 97} 1<j<n

Proof. Fix a smooth local chart (U, ¢) on M and local complex coordinates {z7} on
U C M. Then the canonical almost complex structure Jj; is built up from the standard
complex structure on R?", via Jyy = D¢t o Jgen 0 Dp on TM|y. Using this we can
calculate

JM§;::D¢]JWnD¢§;
= D¢ (g Z;)
=iD¢ ™ (Z;)

which shows that 9/0z7 € T'(T'M]|y). Since the collection gives a basis for each fiber, it
follows that this is a local frame for 7'M (see the discussion following Fact 11 at the
level of fibers). The calculation for {0/0%;} is similar. Note that, when J is merely an

arbitrary almost complex structure on M, we do not know a priori how J interacts with
the local frame {9/027,0/0z7} for Tc M. [

Recall from before we had V; ~ V’. We can replicate this at the level of bundles.

Fact 17. Let M?" be a smooth manifold with almost complex structure J : TM — T M.
Then we have a smooth bundle isomorphism

o TyM — T'M
p(v) =v—1iJv

In summary, for a smooth manifold M?" with almost complex structure J : TM —
T M, we have the following smooth complex vector bundles over M:
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1. TeM: the complexified tangent bundle. Complex rank 2n. Fibers are complexified
tangent spaces (1,M)c = T,M x T,M.

2. T'M: the holomorphic tangent bundle. Complex rank n subbundle of T M. Fibers
are +i-eigenspaces of J¢.

3. T"M: the antiholomorphic tangent bundle. Complex rank n subbundle of T M.
Fibers are —i-eigenspaces of J¢.

4. T;M: same underlying smooth manifold as T'M, but each fiber is T, M regarded
as a complex vector space with complex multiplication given by the action of J.
Complex rank n bundle isomorphic to 7M.

Note that T'M and T M make sense with the smooth structure of M only, but the other
three involve the almost complex structure J in their definition.

Remark. Suppose M is a smooth manifold with an almost complex structure J : TM —
TM? Natural to ask: can we construct a holomorphic structure on M which induces
J as the associated (canonical) almost complex structure? The Newlander-Nirenberg
theorem says that this is the case if and only if the almost complex structure .J is
integrable.
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