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1 Complexification
Let Mn be a real smooth n-dimensional manifold. Any complex-valued function f ∈
C∞(M ;C) on M can be uniquely expressed as f = u + iv where u, v ∈ C∞(M ;R).
Namely, u and v are given by

u = Re f =
1

2
(f + f)

v = Im f =
1

2i
(f − f)

Similarly, given a complex-valued vector field Z on M we would like to be able to write
Z = X + iY for some real-valued vector fields X, Y ∈ Γ(M ;TM). But this expression
does not make sense because Y (p) ∈ TpM is an element of a real vector space and so
the scalar multiplication iY (p) is not well-defined. Thus, in order to make sense of this,
we need to extend the real scalar multiplication on each tangent space TpM to allow for
complex scalar multiplication.

There is a natural way of achieving this. Consider the complex vector space C as
an example. A complex number z = u + iv can be identified with an ordered pair
z = (u, v) ∈ R× R. Thus C ' R× R as a real 2-dimensional vector space. Under the
R-linear isomorphism

C→ R× R
u+ iv 7→ (u, v)

the product (a+ ib) · (u+ iv) maps to (au− bv, bu+ av). Thus, bringing the complex
structure back into the picture, as a complex vector space C is just R×R with complex
scalar multiplication given by (a+ ib) · (u, v) = (au− bv, bu+ av), which turns it into a
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1-dimensional complex vector space. Then looking at higher-dimensions, any complex
vector z ∈ Cn = C× · · · × C looks like

z = (z1, z2, . . . , zn) = ((u1, v1), (u2, v2), . . . , (un, vn)) ∈ Rn × Rn

which one can identify with the n-tuple of complex numbers

z = (u1 + iv1, . . . , un + ivn) = (u1, . . . , un) + i(v1, . . . , vn) = u+ iv

under the aforementioned identification (u, v) = u+ iv. Once again, the complex scalar
multiplication on Cn ' Rn × Rn is given by

(a+ ib) · (u, v) = (au− bv, bu+ av).

We can replace Rn with any abstract real n-dimensional vector space V and follow the
same process. Define VC = V ×V as a real 2n-dimensional vector space, and then define
complex scalar multiplication on VC by

(a+ ib) · (u, v) = (au− bv, bu+ av).

This turns VC into a complex vector space of complex dimension n, called the complex-
ification of V . Thus, for example, Cn is the complexification of Rn.

Fact 1 (Basis for complexification). Let V be a real vector space with complexification
VC. If (e1, . . . , en) is a basis for V over R, then ((e1, 0), . . . , (en, 0)) is a basis for VC
over C. Under the identification u+ iv = (u, v) this basis is just written as (e1, . . . , en)
again. In particular this means that dimR V = dimC VC.

Proof. Note that for c = a+ ib ∈ C and u ∈ V we have c · (u, 0) = (au, bu) = au+ ibu.
Thus if cj = aj + ibj are some complex scalars for which

0 =
n∑

j=1

cj(ej, 0) =
n∑

j=1

(aj + ibj)(ej, 0) =
n∑

j=1

(ajej, b
jej)

then this implies that
∑

j a
jej =

∑
j b

jej = 0, which is only possible if aj = bj = 0 for
all j since {ej} is linearly independent over R. Thus {(ej, 0)} is linearly independent
over C. Furthermore, given any w = (u, v) ∈ VC, we can write

u =
n∑

j=1

ujej and v =
n∑

j=1

vjej

for some scalars uj, vj ∈ R. If we take wj = uj + ivj then

n∑
j=1

wj(ej, 0) =
n∑

j=1

(ujej, v
jej) = (u, v)

which shows that {(ej, 0)} is a spanning set for VC. This completes the proof.

In the same way that R is identified with the real axis R× {0} ⊆ C, any real vector
space V can be identified with the real subspace V × {0} of its complexification VC.
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Fact 2. Let V be a real vector space with complexification VC. Then V × {0} ⊆ VC is a
real subspace which is canonically isomorphic to V (as real vector spaces) under the map

V → V × {0} ⊆ VC

u 7→ (u, 0)

Thus V × {0} is a canonical copy of V inside VC, i.e. V is canonically embedded as a
real subspace of VC.

Complexification is a nicely behaved procedure in the sense that it defines a functor
from the category of real vector spaces to the category of complex vector spaces. Given
real vector spaces V,W and an R-linear map L : V → W , we can extend canonically to
a C-linear map LC : VC → WC by defining

LC(u, v) = (Lu, Lv)

i.e. L(u+ iv) = Lu+ iLv for any u, v ∈ V . This map is indeed complex linear because

LC((a+ ib)(u, v)) = LC(au− bv, bu+ av)

= (L(au− bv), L(bu+ av))

= (aL(u)− bL(v), bL(u) + aL(v))

= (a+ ib)(Lu, Lv)

= (a+ ib)LC(u, v).

Evidently LC is uniquely determined by complex linearity plus the fact that it preserves
the two embeddings u 7→ (u, 0) and v 7→ (0, v), which is to say that it fits into the two
diagrams

V W V W

VC WC VC WC

L

(u, 0) (w, 0)

L

(0, u) (0, w)

LC LC

Fact 3. If U, V,W are real vector spaces and A : V → W and B : U → V are real-linear
maps, then:

(i) (A ◦B)C = AC ◦BC.

(ii) A is invertible if and only if AC is invertible and (A−1)C = (AC)−1.

Remark. Henceforth we will identify a real vector space V with the subspace V ×{0} ⊆
VC, and so for any u ∈ V we will also write u ∈ VC to mean (u, 0). Note that this
is consistent with the identification (u, v) = u + iv. Moreover, for any linear map
L : V → W we will also denote the complexification LC by L, so for example we will
write L(u+ iv) = Lu+ iLv.

The usual notions of conjugation, real part, and imaginary part can be applied to
the complexification of any abstract vector space. Given any real vector space V with
complexification VC, the conjugation operator is given by

VC → VC

(u, v) 7→ (u, v) = (u,−v)
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i.e. u+ iv = u − iv. Evidently this map is R-linear but not C-linear. In fact it is
conjugate-linear : for any λ ∈ C and w ∈ VC we have λ · w = λ · w. A vector w ∈ VC is
called real if w = w. The real vectors are precisely those vectors u ∈ V ⊆ VC. Given
any vector w ∈ VC there are two associated real vectors,

Rew =
1

2
(w + w) ∈ V ⊆ VC called the real part of w .

Imw =
1

2i
(w − w) ∈ V ⊆ VC called the imaginary part of w .

which satisfy w = Rew + i Imw.
Since complexification is nicely behaved (i.e. functorial) it can be extended imme-

diately from vector spaces to vector bundles. Thus, given a smooth manifold M , we
will be able to complexify each tangent space TpM and assemble a complexified tangent
bundle, thereby allowing us to multiply tangent vectors by complex scalars. We start by
stating the facts for vector bundles in general. Given a real vector bundle π : E →M ,
the complexification is the complex vector bundle with total space

EC =
⊔
p∈M

(Ep)C

and with the obvious projection map

πC : EC →M

(p, (u, v)) 7→ p

The local data for the complex vector bundle πC : EC →M is constructed from that of
π : E →M as follows:

(i) Given an open subset U ⊆M and a local trivialization Φ : π−1(U)→ U × Rk for
E over U , we get a local trivialization ΦC : π−1C (U)→ U ×Ck for EC over U given
by

ΦC(x, (u, v)) = (x, (Φ|Ex)C(u, v))

i.e. by complexifying the linear isomorphisms on the fibers of E →M .

(ii) Given two overlapping local trivializations (U,Φ) and (V,Ψ) for E with transition
map τ : U ∩ V → GL(k,R) satisfying

(Ψ ◦ Φ−1)(x, v) = (x, τ(x)v)

we get a transition map τC : U ∩ V → GL(k,C) given by τC(x) = τ(x)C satisfying

(ΨC ◦ Φ−1C )(x, (u, v)) = (x, τC(x)(u, v))

Thus πC : EC →M has a unique structure as a smooth rank-k complex vector bundle,
with smooth local trivializations given by the maps ΦC defined above.

Fact 4 (Local frames for complexified vector bundle). Let E → M be a smooth real
vector bundle with complexification EC →M .
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(i) If (σ1, . . . , σk) is a smooth real local frame for E over U ⊆M , then ((σ1, 0), . . . , (σk, 0))
is a smooth complex local frame for EC over U ⊆M .

(ii) If (σ1, . . . , σk) corresponds to a local trivialization Φ for E|U , then ((σ1, 0), . . . , (σk, 0))
corresponds to the local trivialization ΦC for EC|U .

Proof. The fact that ((σ1, 0), . . . , (σk, 0)) constitutes a complex local frame for EC over
U ⊆ M follows immediately from applying Fact 1 pointwise at each p ∈ M to get a
basis for each fiber. Moreover, the smoothness of the local frame will follow from the
smoothness of the local trivialization ΦC, so we just need to show that ((σ1, 0), . . . , (σk, 0))
corresponds to ΦC.

Say (σ1, . . . , σk) corresponds to a local trivialization Φ for E over U , so that

Φ−1(x, (u1, . . . , uk)) =
∑
j

ujσj(x)

for every x ∈ U . Then ((σ1, 0), . . . , (σk, 0)) corresponds to the complexified local
trivialization ΦC over U . To see why, consider the inverse map

Φ−1C : U × Ck → EC|U
Φ−1C (x,w) = (Φ|−1Ex

)C(w)

where for each x ∈ U we are restricting to the fiber Ex and applying the complexified
linear isomorphism

(Φ|−1Ex
)C : Ck → (Ex)C.

Writing w = u+ iv = (u1, v1, . . . , uk, vk) ∈ Ck ' Rk × Rk, we have

Φ−1C (x,w) = (Φ|−1Ex
)C(u, v)

= (Φ−1(x, u),Φ−1(x, v))

=
∑
j

(ujσj(x)), vjσj(x))

=
∑
j

wj · (σj(x), 0)

which shows that the local frame ((σ1, 0), . . . , (σk, 0)) corresponds to the local trivializa-
tion ΦC.

Fact 5. Let E → M be a smooth real vector bundle with complexification EC → M .
Then the conjugation operator on fibers extends to a smooth conjugate-linear bundle map
c : EC → EC.

Proof. Restricting to a fiber over some p ∈M we have a conjugate-linear operator

c(p, ξ) = (p, ξ)

and gluing these together yields a well-defined conjugate-linear bundle map. In order
to show that c is smooth, it suffices to show that c ◦ s ∈ Γ(EC|U) is smooth for every
smooth s ∈ Γ(EC|U). Take a smooth local frame (σ1, . . . , σk) for E over U and the
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induced local frame for ((σ1, 0), . . . , (σk, 0)) for EC over U . Then any such s ∈ Γ(EC|U)
can be expressed as

s =
∑
j

sj(σj, 0)

for some smooth component functions sj ∈ C∞(M ;C). Then

(c ◦ s)(x) = s(x) =
∑
j

sj(σj, 0) =
∑
j

sj(x)(σj(x), 0)

where the last equality holds because conjugation is conjugate-linear and the vectors
(σj(x), 0) are real. Now if sj = aj + ibj is smooth then sj(x) = aj − ibj is also smooth.
Thus c ◦ s is smooth since it has smooth coefficients in a local frame, and c is a smooth
bundle map.

Given any local section s ∈ Γ(M ;EC) we can write

s(x) = (u(x), v(x)) = u(x) + iv(x) ∈ (Ex)C

for a unique pair of local sections u, v ∈ Γ(M ;E). Namely

u(x) = Re s(x) =
1

2
(s(x) + s(x))

v(x) = Im s(x) =
1

2i
(s(x)− s(x))

which are smooth if and only if s is smooth because conjugation is smooth.

Example 1 (Complexified tangent bundle). LetMn be a smooth manifold. The tangent
bundle of M is the smooth real vector bundle of rank n,

TM =
⊔
p∈M

TpM →M

The complexification of the tangent bundle is the smooth complex vector bundle of rank
n,

TCM =
⊔
p∈M

(TpM)C →M

A complex vector field is a section Z ∈ Γ(M ;TCM), i.e. a map

Z :M → TCM

p 7→ Zp = (Xp, Yp) ∈ (TpM)C = TpM × TpM

which we also write as Zp = Xp + iYp. Thus the complex vector field Z can be written
as Z = X + iY for some real vector fields X, Y ∈ Γ(M ;TM). A complex vector field
acts as a derivation on smooth complex-valued functions: given f = u+ iv ∈ C∞(M ;C)
we have

Z(f) = (X + iY )(u+ iv) = (X(u)− Y (v)) + i(X(v) + Y (u)) ∈ C∞(M ;C)
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Example 2 (Complexified cotangent bundle). Let Mn be a smooth manifold. The
cotangent bundle of M is the smooth real vector bundle of rank n,

T ∗M =
⊔
p∈M

T ∗pM →M

The complexification of the tangent bundle is the smooth complex vector bundle of rank
n,

T ∗CM =
⊔
p∈M

(T ∗pM)C →M

A complex 1-form is a section ω ∈ Γ(M ;T ∗CM), i.e. a map

ω :M → T ∗CM

p 7→ ωp = (αp, βp) ∈ (T ∗pM)C = T ∗pM × T ∗pM

which we also write as ωp = αp + iβp. Thus the complex 1-form ω can be written as
ω = α + iβ for some real 1-forms α, β ∈ Γ(M ;T ∗M).

Recall that the dual space of a complex vector space H is by definition the complex
vector space H∗ consisting of complex-linear functionals on H, i.e.

H∗ = HomC(H,C) = {L : H → C : L is C-linear}

Thus for any p ∈ M we have ((TpM)C)∗ = HomC((TpM)C,C). A complex 1-form
ω ∈ Γ(M ;T ∗CM) is by definition a map ω : M → T ∗CM such that ωp ∈ (T ∗pM)C for every
p ∈ M . Note that ωp can also be regarded as a linear functional on the complexified
tangent space,

ωp : (TpM)C → C

because we have a natural isomorphism ((TpM)C)∗ ' (T ∗pM)C of complex vector spaces.

Fact 6 (Complexification of the dual space). Let V be a real vector space with complex-
ification VC. Then we have a canonical isomorphism of complex vector spaces

HomC(VC,C) = (VC)∗ ' (V ∗)C = (HomR(V,R))C

i.e. complexification commutes with dualization.

Proof. It’s easy to see that the spaces are isomorphic by comparing their dimensions. A
natural isomorphism is also straightforward to describe. An element of (V ∗)C is a pair
(ω, η) = ω + iη where ω, η ∈ V ∗ are real-linear functionals V → R. The pair (ω, η) can
be regarded as a C-linear functional on VC = V × V via

(ω, η)(u, v) = (ω(u)− η(v), ω(v) + η(u))

i.e. by applying the distributive law to (ω+ iη)(u+ iv). Thus with this identification we
have (ω, η) ∈ HomC(VC,C) = (VC)∗. It’s straightforward to check that this is a bijective
correspondence.
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As a consequence, a complex 1-form can be equivalently regarded as a C∞(M ;C)-
linear map

ω : Γ(M ;TCM)→ C∞(M ;C)

ω(Z)(p) = ωp(Zp)

The function ω(Z) can also be expressed in terms of real and imaginary parts,

ω(Z) = (α + iβ)(X + iY ) = (α(X)− β(Y )) + i(α(Y ) + β(X)).

One common way a complex 1-form can appear is as the differential of a smooth
complex-valued function. Say we have a smooth function f : M → C. Then its
differential at p ∈M is an R-linear map

dfp : TpM → C

so that dfp ∈ HomR(TpM,C). Note that the latter space of functionals can be regarded
as a complex vector space by defining complex scalar multiplication by

(λ · ϕ)(v) = λϕ(v).

for any real-linear functional ϕ : TpM → C and λ ∈ C. Now the real-linear functional
dfp yields a complex-linear functional using the following isomorphism:

Fact 7. Let V be a real vector space with complexification VC. Then we have the following
canonical isomorphisms of complex vector spaces:

HomR(V,C) ' HomC(VC,C)

Proof. Given a real-linear map ϕ : V → C we can “extend” to a map on VC by defining

ϕ̃(u+ iv) = ϕ(u) + iϕ(v)

Then ϕ̃ is complex-linear because

ϕ̃((a+ ib)(u+ iv)) = ϕ̃((au− bv) + i(av + bu))

= ϕ(au− bv) + iϕ(av + bu)

= aϕ(u) + ibϕ(u)− bϕ(v) + iaϕ(v)

= (a+ ib)(ϕ(u) + iϕ(v))

= (a+ ib)ϕ̃(u+ iv)

Thus ϕ̃ ∈ HomC(VC,C). It’s straightforward to check that this is a bijective correspon-
dence.

Applying the isomorphism of Fact 7 with V = TpM we deduce dfp ∈ ((TpM)C)∗ for
every p ∈ M and so df ∈ Γ(M ;T ∗CM) is in fact a complex 1-form. Now suppose that
f is decomposed into real and imaginary parts f = u+ iv. It’s natural to expect that
we should be able to write df = du+ idv with real-valued 1-forms du, dv ∈ Γ(M ;T ∗M).
This claim warrants some justification, though, because a priori dfp is a complex-linear
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functional on (TpM)C whereas dup and dvp are real-linear functionals on TpM . The key
to sorting this out is the isomorphism in Fact 6.

First of all note that for real vectors ξ ∈ TpM we certainly have

dfp(ξ) = dup(ξ) + idvp(ξ)

simply by definition of the differential df . Moreover, by the isomorphism of Fact 6,
the pair (dup, dvp) = dup + idvp ∈ (HomR(TpM,R))C is naturally identified with the
complex-linear functional (dup, dvp) ∈ ((TpM)C)∗ given by

(dup, dvp)(ξ + iζ) = dup(ξ)− dvp(ζ) + i(dup(ζ) + dvp(ξ)).

Thus the action of dfp ∈ ((TpM)C)∗ looks like

dfp(ξ + iζ) = dfp(ξ) + idfp(ζ)

= dup(ξ) + idvp(ξ) + i(dup(ζ) + idvp(ζ))

= (dup(ξ)− dvp(ζ)) + i(dup(ζ) + dvp(ξ))

= (dup + idvp)(ξ + iζ)

We conclude that it makes sense to write df = du+ idv where du and dv are real 1-forms.

2 Complex local coordinates
Let us first consider the model case Cn = R2n. The standard coordinates are {x1, y1, . . . , xn, yn},
which are global smooth coordinates for R2n as a smooth 2n-dimensional manifold. The
real 1-forms (dxj, dyj)1≤j≤n constitute a smooth global frame for T ∗R2n. Thus by Fact
4 the 1-forms {(dxj, 0), (dyj, 0)}1≤j≤n constitute a smooth global frame for the complex-
ified cotangent bundle T ∗CR2n. Recall that we write (dxj, dyj) = dxj + idyj, and any
complex 1-form can be expressed as a complex linear combination∑

j

ajdx
j + bjdy

j

for some complex functions aj, bj ∈ C∞(R2n,C). Consider the complex 1-forms

dzj = dxj + idyj

dzj = dxj − idyj

The collection {dzj, dzj}1≤j≤n constitutes another smooth global frame for T ∗CR2n because
we can solve for dxj, dyj in terms of dzj, dzj, namely

dxj =
1

2
(dzj + dzj)

dyj =
1

2i
(dzj − dzj)

Given a smooth function f : U → C its differential is the complex 1-form given by

df =
n∑

j=1

∂f

∂xj
dxj +

∂f

∂yj
dyj. (1)
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We can also express df in terms of the complex frame,

df =
n∑

j=1

Ajdz
j +Bjdz

j

for some coefficient functions Aj, Bj ∈ C∞(R2n,C). To see what these coefficients are,
we can take equation (1) and replace dxj and dyj with their expression in terms of
complex differentials,

df =
n∑

j=1

∂f

∂xj
dxj +

∂f

∂yj
dyj

=
n∑

j=1

∂f

∂xj
1

2
(dzj + dzj) +

∂f

∂yj
1

2i
(dzj − dzj)

=
n∑

j=1

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
dzj +

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
dzj

Motivated by this calculation, we define the complex coordinate vector fields on R2n as

∂f

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
∈ Γ(TCR2n)

∂f

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
∈ Γ(TCR2n)

so that df is then given by

df =
n∑

j=1

∂f

∂zj
dzj +

∂f

∂zj
dzj.

When thinking of R2n as a complex manifold of dimension n, the frame {dzj, dzj}
is better because it can be shown that a differential form is holomorphic if it has a
particular structure with respect to this frame. Thus the complex local coordinates
reflect features of the holomorphic structure of a complex manifold.

We recall the definition of local coordinate vector fields on a smooth manifold. Let
Mn be a smooth manifold with φ : U ⊆M → Rn any smooth local chart on M , and let
(x1, . . . , xn) denote the associated local coordinates. The chart determines coordinate
vector fields ∂/∂xj ∈ Γ(TM |U), 1 ≤ j ≤ n, given by

∂f

∂xj
=

∂

∂xj
(
f ◦ φ−1

)
for any smooth function f ∈ C∞(U ;R). Then (∂/∂x1, . . . , ∂/∂xn) is a smooth local
frame for TM over U .

Now suppose M2n is an even-dimensional smooth manifold, so M is locally homeo-
morphic to R2n. As before we denote the local coordinates in some chart by {xj, yj}1≤j≤n
and then get local frames{

∂

∂xj
,
∂

∂yj

}
1≤j≤n

for TM and {dxj, dyj}1≤j≤n for T ∗M.
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Since each (co)tangent space is a copy of R2n, we can follow the above procedure to get
a local frame for the complexified cotangent bundle T ∗CM ,

dzj = dxj + idyj ∈ Γ(T ∗CM)

dzj = dxj − idyj ∈ Γ(T ∗CM)

and a local frame for the complexified tangent bundle TCM ,

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
∈ Γ(TCM)

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
∈ Γ(TCM)

These are the complex coordinate frames.
Recall that a smooth function f : U ⊆ C → C is holomorphic if it satisfies the

Cauchy-Riemann equations. If f(x, y) = u(x, y) + iv(x, y) then the Cauchy-Riemann
equations are

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x

We can express these equations in terms of the complex partial derivative ∂/∂z =
∂/∂x+ i∂/∂y. We calculate

∂f

∂z
=
∂f

∂x
+ i

∂f

∂y

=

(
∂u

∂x
+ i

∂v

∂x

)
+ i

(
∂u

∂y
+ i

∂v

∂y

)
=

(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂u

∂y
+
∂v

∂x

)
and thus we see that

CR equations for f ↔ ∂f

∂z
≡ 0

More generally for a smooth function f : U ⊆ Cn → C, we say that f is holomorphic
if it satisfies the Cauchy-Riemann equations in each variables zj. Thus we have the
following important characterization.

Fact 8 (Holomorphic functions). A smooth function f : U ⊆ Cn → C is holomorphic if
and only if

∂f

∂zj
≡ 0 on U

for every j = 1, . . . , n.

3 Almost complex structures
Let V be a real vector space. A complex structure on V is a real-linear endomorphism
J : V → V such that J2 = −I. Evidently J is supposed to be something like a
“multiplication by i” operator.
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Fact 9. Let V be a real vector space and let J : V → V be a complex structure on V .
Then:

(i) V can be turned into a complex vector space by defining i · v = Jv for any v ∈ V
and extending linearly, i.e.

(a+ ib) · v = av + bJv

for any v ∈ V . We denote this complex vector space by VJ .

(ii) V has even real dimension dimR V = 2 dimC VJ .

Proof. (i) Note that the definition i · v = Jv makes sense because J2 = −I and thus
−v = i2 · v = J2v = −v is consistent. It is straightforward to check that complex
multiplication so defined is associative and distributes over addition.

(ii) Say VJ has complex dimension n ≥ 1 let {v1, . . . , vn} be any basis for VJ over C.
Then any v ∈ VJ can be expressed as

v =
n∑

j=1

cjvj

for some complex coefficients cj ∈ C, say cj = aj + ibj. Then

v =
n∑

j=1

cjvj =
n∑

j=1

(aj + ibj)vj =
n∑

j=1

ajvj + bjJvj

and therefore {v1, . . . , vn, Jv1, . . . , Jvn} is a spanning set for V over R. This set is
also linearly independent over R because {v1, . . . , vn} is linearly independent over
C. Thus {v1, . . . , vn, Jv1, . . . , Jvn} is a basis for V over R.

So far we have discussed two ways of turning V into a complex vector space: VJ
(underlying real space V ) and VC (underlying real space V × V ). It turns out that there
is an important relationship between VJ and VC. Complexify J to get a complex-linear
map JC : VC → VC satisfying J2

C = −I where I now denotes the identity map on VC.
Then the eigenvalues of JC satisfy λ2 = −1 so they are λ = ±i.

Fact 10. Let J be a complex structure on a real vector space V and let VC denote the
complexification of V . Then VJ and V−J are complex subspaces of VC, namely

VJ ' V ′ = +i eigenspace of JC
V−J ' V ′′ = −i eigenspace of JC

and moreover, we have a complete eigenspace decomposition

VC = V ′ ⊕ V ′′.

whereby any w ∈ VC decomposes into w = w′ + w′′, with

w′ =
1

2
(w − iJCw), w′′ =

1

2
(w + iJCw).
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Proof. First we show that VJ ' V ′. Consider the complex-linear map

ϕ : VJ → VC

ϕ(v) = v − iJv = (v,−Jv)

Note that
JCϕ(v) = J(v − iJv) = Jv − iJ2v = Jv + iv = iϕ(v)

so ϕ(v) ∈ V ′ ⊆ VC for every v ∈ VJ . Moreover, ϕ is injective, because if v ∈ VJ such
that ϕ(v) = 0 then v = iJv i.e. Jv = −iv, but v ∈ VJ implies that Jv = iv as well. So
Jv = 0 and since J is invertible we have v = 0. Thus ϕ is a complex-linear isomorphism.
A similar argument using the map v 7→ v + iJv shows that V−J ' V ′′.

Regarding the eigenspace decomposition VC = V ′ ⊕ V ′′: an argument similar to the
above shows that w′ ∈ V ′ and w′′ ∈ V ′′, and it’s clear that they satisfy w = w′+w′′. On
the other hand, a nonzero vector cannot be an eigenvector for two distinct eigenvalues
so V ′ ∩ V ′′ = 0 and this completes the proof.

Fact 11. The conjugation operator on VC interchanges V ′ and V ′′, thus it defines a
real-linear isomorphism of the underlying real vector spaces, and

dimC V
′ = dimC V

′′ =
1

2
dimC VC.

Let’s illustrate Fact 10 in the case that V = R2n. The standard basis for R2n is the
set of vectors {X1, . . . , Xn, Y1, . . . , Yn} where

Xj = (0, . . . , 1, . . . , 0) (1 in the jth entry)
Yj = (0, . . . , 1, . . . , 0) (1 in the (n+ j)th entry)

and with respect to this basis the standard complex structure is the 2n× 2n matrix

JR2n =

[
0 −In
In 0

]
where In is the n× n identity matrix. Evidently then

JXj = Yj, JYj = −Xj.

Consider the complexification JC : (R2n)C → (R2n)C (a complex-linear map between
complex vector spaces of dimension 2n). From Fact 10, the eigenspaces of JC are given
by

(R2n)′ = span{Xj − iJXj : 1 ≤ j ≤ n} = span{Xj − iYj : 1 ≤ j ≤ n}
(R2n)′′ = span{Xj + iJXj : 1 ≤ j ≤ n} = span{Xj + iYj : 1 ≤ j ≤ n}.

Now suppose M is a smooth manifold of real dimension 2n. For any point p ∈M we
can take a smooth chart (U, φ) centered at x ∈M which affords linear isomorphisms

dφp : TpM
'−→ R2n

(dφp)C : (TpM)C
'−→ (R2n)C
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by which we identify

∂

∂xj

∣∣∣∣
p

↔ Xj,
∂

∂yj

∣∣∣∣
p

↔ Yj,
∂

∂zj

∣∣∣∣
p

↔ Zj =
1

2
(Xj − iYj)

Under this identification, the standard complex structure on R2n gives us a complex
structure on the tangent space TpM . Thus we have a decomposition (TpM)C = T ′pM ⊕
T ′′pM where T ′pM and T ′′pM are the subspaces spanned by

T ′pM = span

{
∂

∂zj

∣∣∣∣
p

}
1≤j≤n

, T ′′pM = span

{
∂

∂zj

∣∣∣∣
p

}
1≤j≤n

.

We would like to glue these fiberwise complex structures together to construct
a complex structure on the tangent bundle TM → M , i.e. a smooth real-linear
bundle endomorphism J : TM → TM satisfying J2 = −I. Taking a smooth chart
φ : U ⊆M → R2n, we should try to define

J : TM |U → TM |U
J = Dφ−1 ◦ JR2n ◦Dφ

In order for this to yield a well-defined global endomorphism of TM , the endomorphisms
need to agree on the overlap of two different smooth charts (U, φ) and (V, ψ) on M .
Thus we need

Dφ−1 ◦ JR2n ◦Dφ = Dψ−1 ◦ JR2n ◦Dψ
on the overlap U ∩ V . We can rewrite both sides of this equation as follows:

Dφ−1 ◦ JR2n ◦Dφ = (Dψ−1 ◦Dψ) ◦Dφ−1 ◦ JR2n ◦Dφ
= Dψ−1 ◦ (Dψ ◦Dφ−1) ◦ JR2n ◦Dφ

and on the other side

Dψ−1 ◦ JR2n ◦Dψ = Dψ−1 ◦ JR2n ◦Dψ ◦ (Dφ−1 ◦Dφ)

= Dψ−1 ◦ JR2n ◦ (Dψ ◦Dφ−1) ◦Dφ

Thus we see that, in order for these two expressions to coincide, we need to be able to
commute the complex structure JR2n with the differential D(ψ ◦ φ−1) of the transition
map, i.e. we need to have

D(ψ ◦ φ−1) ◦ JR2n = JR2n ◦D(ψ ◦ φ−1).

If this holds for every pair of overlapping charts on M , then the complex structures
glue together to produce a well-defined global complex structure JM : TM → TM . We
will call this the canonical complex structure on TM because it arises in a natural
way from the smooth structure of M and the standard complex structure of R2n. We
summarize this observation:

Fact 12. Let M be a smooth manifold of real dimension 2n. Then TM admits a
canonical complex structure JM : TM → TM if and only if

D(ψ ◦ φ−1) ◦ JR2n = JR2n ◦D(ψ ◦ φ−1)

for every pair of overlapping charts (U, φ) and (V, ψ) on M .
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Remark. A few important remarks regarding terminology.

1. The term “canonical” complex structure in Fact 12 is an important detail. In
general there may be many different complex structures on TM , and it is possible
for the commutator condition to fail while TM admits a complex structure which
is different from the canonical one. Given a smooth manifold M and a complex
structure J on TM can we determine if it’s canonical? Are there obstructions
against constructing a canonical complex structure on TM? This is a nontrivial
question in general.

2. A complex structure on TM is also called an “almost complex structure” on M .
Thus an “almost complex manifold” is a smooth manifold M together with a
complex structure J : TM → TM on TM .

3. A complex manifold is a smooth manifold M equipped with an additional holomor-
phic structure so that the transition maps are holomorphic. This is stronger than
being an almost complex manifold. We will show below that a complex manifold
admits a canonical almost complex structure.

In order to demonstrate the significance of Fact 12 we will need to develop some
basic ideas about the complex differential of a smooth function. Let F : Rn → Rm be a
smooth map and let dF : TRn → TRm denote its differential. Its complexification is
the complex-linear bundle homomorphism

DF = (dF )C : TCRn → TCRm

and we call DF the complex differential of F .

Fact 13 (Complex differential in coordinates). Let F : R2n → R2m be a smooth
map. Let {∂/∂zj, ∂/∂zj}1≤j≤n denote the complex coordinate frame for TCR2n and
{∂/∂wk, ∂/∂wk}1≤k≤m the complex coordinate frame for TCR2m. Then the complex
differential is given by:

DF

(
∂

∂zj

)
=
∑
k

∂F k

∂zj
∂

∂wk
+
∂F

k

∂zj
∂

∂wk

DF

(
∂

∂zj

)
=
∑
k

∂F k

∂zj
∂

∂wk
+
∂F

k

∂zj
∂

∂wk

Proof. Say {xj, yj} are standard real coordinates on R2n and {uk, vk} are standard real
coordinates on R2m. The corresponding complex coordinates are zj = xj + iyj and
wk = uk + ivk and the complex coordinate frames are

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
∂

∂wk
=

1

2

(
∂

∂uk
− i ∂

∂vk

)
,

∂

∂wk
=

1

2

(
∂

∂uk
+ i

∂

∂vk

)
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Thus we have

∂

∂uk
=

∂

∂wk
+

∂

∂wk

∂

∂vk
= i

(
∂

∂wk
− ∂

∂wk

)
Writing F = U + iV in complex coordinates, by definition the differential of F is given
by

dF

(
∂

∂xj

)
=
∑
k

∂Uk

∂xj
∂

∂uk
+
∂V k

∂xj
∂

∂vk

dF

(
∂

∂yj

)
=
∑
k

∂Uk

∂yj
∂

∂uk
+
∂V k

∂yj
∂

∂vk

Thus by complex-linearity the complex differential is given by

DF

(
∂

∂zj

)
=
∑
k

∂Uk

∂zj
∂

∂uk
+
∂V k

∂zj
∂

∂vk
.

Now we convert this into the complex coordinate frame on TCR2m

DF

(
∂

∂zj

)
=
∑
k

∂Uk

∂zj

(
∂

∂wk
− ∂

∂wk

)
+
∂V k

∂zk
· i
(

∂

∂wk
− ∂

∂wk

)
=
∑
k

(
∂Uk

∂zj
+ i

∂V k

∂zj

)
∂

∂wk
+

(
∂Uk

∂zj
− i∂V

k

∂zj

)
∂

∂wk

=
∑
k

∂F k

∂zj
∂

∂wk
+
∂F

k

∂zj
∂

∂wk

which is the formula we wanted to establish. The calculation for DF (∂/∂zj) is similar.

Fact 14. Let U ⊆ R2n be an open subset and let F : U ⊆ R2n → R2m be a smooth map.
Then F is holomorphic as a map F : U ⊆ Cn → Cm if and only if

DF (p) ◦ JCn = JCm ◦DF (p) (2)

holds for every p ∈ U .

Proof. First suppose equation (2) holds on U . Then using the complex coordinate frame
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expression for DF we calculate

0 = DF

(
JCn

∂

∂zj

)
− JCm

(
DF

(
∂

∂zj

))
= DF

(
−i ∂
∂zj

)
− JCm

(∑
k

∂F k

∂zj
∂

∂wk
+
∂F

k

∂zj
∂

∂wk

)

= −iDF
(
∂

∂zj

)
−
∑
k

∂F k

∂zj
JCm

(
∂

∂wk

)
+
∂F

k

∂zj
JCm

(
∂

∂wk

)

= −iDF
(
∂

∂zj

)
−
∑
k

∂F k

∂zj
· i ∂

∂wk
− ∂F

k

∂zj
· i ∂

∂wk

= −i
∑
k

∂F k

∂zj
∂

∂wk
+
∂F

k

∂zj
∂

∂wk
−
∑
k

∂F k

∂zj
· i ∂

∂wk
− ∂F

k

∂zj
· i ∂

∂wk

= −2i
∑
k

∂F k

∂zj
∂

∂wk

hence ∂F k/∂zj ≡ 0 on U for every j, k, which implies that F is holomorphic.
Conversely, suppose that F is holomorphic. Then ∂F k/∂zj ≡ 0 for every j, k and

so the above calculation shows that equation (2) holds when applied to ∂/∂zj. Then
by conjugating everything we find that the equation also holds when applied to ∂/∂zj.
Thus (2) is satisfied.

Applying this fact the transition map F = ψ ◦ φ−1 determined by two overlapping
charts on M , together with Fact 12, we conclude that TM admits a canonical complex
structure JM : TM → TM if and only if the transition maps are holomorphic. Thus,
if M is a complex manifold (i.e. a smooth manifold equipped with an additional
holomorphic structure so that the transition maps are holomorphic) then TM admits a
canonical complex structure JM : TM → TM .

Corollary 1. Let M be a complex manifold. Then TM admits a canonical complex
structure JM : TM → TM .

Let M be a smooth manifold of real dimension 2n with almost complex structure
J : TM → TM . Then we can replicate the eigenspace decomposition from Fact
10 at the level of bundles. Complexifying yields a complex bundle endomorphism
JC : TCM → TCM with ±i-eigenspaces T ′pM and T ′′pM in each fiber, and so we can
define smooth complex subbundles

T ′M =
⊔
p∈M

T ′pM ⊆ TCM →M

T ′′M =
⊔
p∈M

T ′′pM ⊆ TCM →M

T ′M is called the holomorphic tangent bundle and T ′′M the antiholomorphic
tangent bundle.
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Fact 15. Let M2n be a smooth manifold with almost complex structure J : TM →
TM . Let T ′M and T ′′M denote the holomorphic and antiholomorphic tangent bundles
associated with J . Then we have a decomposition

TCM = T ′M ⊕ T ′′M.

Proof. The proof is similar to the proof of Fact 10.

If J is merely an arbitrary almost complex structure on M then this is about all
we can say; however, if J is the canonical almost complex structure induced by a
holomorphic structure on M , then we can also say that the complex local coordinate
frame for TCM splits into two local frames for T ′M and T ′′M .

Fact 16. Let M be a smooth manifold with canonical almost complex structure JM :
TM → TM . Let T ′M and T ′′M denote the holomorphic and antiholomorphic tangent
bundles associated with JM . If {zj} are local complex coordinates on M then we obtain
local frames {

∂

∂zj

}
1≤j≤n

for T ′M,

{
∂

∂zj

}
1≤j≤n

for T ′′M.

Proof. Fix a smooth local chart (U, φ) on M and local complex coordinates {zj} on
U ⊆M . Then the canonical almost complex structure JM is built up from the standard
complex structure on R2n, via JM = Dφ−1 ◦ JR2n ◦ Dφ on TM |U . Using this we can
calculate

JM
∂

∂zj
= Dφ−1JR2nDφ

∂

∂zj

= Dφ−1 (JR2nZj)

= iDφ−1(Zj)

= i
∂

∂zj

which shows that ∂/∂zj ∈ Γ(T ′M |U ). Since the collection gives a basis for each fiber, it
follows that this is a local frame for T ′M (see the discussion following Fact 11 at the
level of fibers). The calculation for {∂/∂zj} is similar. Note that, when J is merely an
arbitrary almost complex structure on M , we do not know a priori how J interacts with
the local frame {∂/∂zj, ∂/∂zj} for TCM .

Recall from before we had VJ ' V ′. We can replicate this at the level of bundles.

Fact 17. Let M2n be a smooth manifold with almost complex structure J : TM → TM .
Then we have a smooth bundle isomorphism

ϕ : TJM → T ′M

ϕ(v) = v − iJv

In summary, for a smooth manifold M2n with almost complex structure J : TM →
TM , we have the following smooth complex vector bundles over M :
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1. TCM : the complexified tangent bundle. Complex rank 2n. Fibers are complexified
tangent spaces (TpM)C = TpM × TpM .

2. T ′M : the holomorphic tangent bundle. Complex rank n subbundle of TCM . Fibers
are +i-eigenspaces of JC.

3. T ′′M : the antiholomorphic tangent bundle. Complex rank n subbundle of TCM .
Fibers are −i-eigenspaces of JC.

4. TJM : same underlying smooth manifold as TM , but each fiber is TpM regarded
as a complex vector space with complex multiplication given by the action of J .
Complex rank n bundle isomorphic to T ′M .

Note that TM and TCM make sense with the smooth structure of M only, but the other
three involve the almost complex structure J in their definition.

Remark. SupposeM is a smooth manifold with an almost complex structure J : TM →
TM? Natural to ask: can we construct a holomorphic structure on M which induces
J as the associated (canonical) almost complex structure? The Newlander-Nirenberg
theorem says that this is the case if and only if the almost complex structure J is
integrable.
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