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1 Preliminaries
This is a collection of notes on the theory of smooth vector bundles on smooth manifolds.
The goal in writing these notes was to develop the necessary prerequisites, starting
from the basics, for further topics in differential geometry such as characteristic classes,
principal bundles, and Yang-Mills gauge theory, while elaborating on certain details
that seemed important to me but were often left out of the exposition.

In these notes there are many interesting and important topics that are not covered:
parallel transport, holonomy, characteristic classes, principal bundles, or K-theory, for
example.

Let V and W be finite-dimensional real vector spaces. We fix the following algebraic
notation:

1. Λk(V ∗) = alternating multilinear maps V k → R.

2. Alt(V k,W ) = alternating multilinear maps V k → W .

3. Hom(V,W ) = linear maps V → W .
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Fact 1. Let V,W be real vector spaces. We have a natural linear isomorphism

V ∗ ⊗W
≃−→ Hom(V,W )

λ⊗ w 7→ λ(•)w
(1)

We have a perfect bilinear pairing

B :Λk(V )× Λk(V ∗) → R
(v1, . . . , vk, λ

1, . . . , λk) 7→ det(λi(vj))

where the determinant here is given by the usual formula

det(λi(vj)) =
∑
σ∈Sk

sgnσ
∏
i

λi(vσ(i)).

This perfect pairing yields another natural linear isomorphism:

Fact 2. Let V be a real vector space. We have a natural linear isomorphism

Λk(V ∗)
≃−→
(
Λk(V )

)∗
x 7→ B(•, x)

(2)

Instead of taking linear functionals on V we could consider linear maps V → W , and
then Fact 2 extends immediately to the following:

Fact 3. Let V,W be real vector spaces. We have a natural linear isomorphism

Hom(Λk(V ),W )
≃−→ Alt(V k,W )

(A : Λk(V ) → W ) 7→ (Ã : V k → W )
(3)

where Ã(v1 . . . , vk) = A(v1 ∧ · · · ∧ vk).

Fact 4. Let M be a smooth manifold and let K ⊆ U ⊆M , where K is closed and U is
open. Then there exists a smooth function ψ :M → R such that:

(i) 0 ≤ ψ ≤ 1 on M

(ii) suppψ ⊆ U

(iii) ψ = 1 on K

A smooth function ψ satisfying the conditions of Fact 4 is called a bump function.
The proof uses partitions of unity, a construction which itself hinges on the separability
and second countability of manifolds. We will appeal to Fact 4 throughout this note
whenever we need to use bump functions.
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2 Vector bundles
Let M be a smooth manifold. A (real) vector bundle of rank-k over M is a smooth
manifold E together with a surjective smooth map π : E →M satisfying the following
conditions:

(i) For every p ∈M , the fiber Ep = π−1(p) over p is a k-dimensional real vector space.

(ii) For every p ∈M , there exists an open neighborhood U of p in M and a diffeomor-
phism Φ : π−1(U) → U × Rk such that

πU ◦ Φ = π|π−1(U)

where πU : U×Rk → U is the projection onto U , and for each q ∈ U the restriction

Φ|Eq : Eq → {q} × Rk ≃ Rk

is a linear isomorphism.

In this case, E is called the total space of the vector bundle, M is the base space,
π is the projection map and each diffeomorphism Φ : π−1(U) → U × Rk is called a
local trivialization of E over U . In everything that follows we will use the notation
π−1(U) = E|U to denote the part of E which is fibered over U ⊆M .

Φ
E|U U × Rk

≃

U

π
πU

Remark. A few remarks about terminology and conventions:

• Technically speaking, here we are only considering smooth vector bundles. Of
course, one could replace the condition “smooth manifold” with “topological space”,
then require only that π be a continuous map, and that the local trivializations
merely be homeomorphisms, etc. But for our purposes everything will reside
within the smooth category.

• In this note we will focus on real vector bundles, but most of this stuff works just
as well for complex vector bundles, replacing Rk with Ck.

• To be very explicit, we should say that a vector bundle is a triple (E,M, π)
satisfying properties (i) and (ii) above, but instead we will often simply say that
“E →M is a vector bundle” or “E is a vector bundle over M ”.

The first thing that one can observe from the definition is that, given a vector bundle
π : E →M , we have

dimE = dimM + rankE

because any local trivialization gives a diffeomorphism between an open subset of E
and a product U × Rk where dimU = dimM and k = rankE.
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Example 1 (Vector bundles). Let M be a smooth manifold.

(a) The trivial bundle of rank-k over M is just the projection π :M × Rk →M . In
this case there is a global trivialization Φ : π−1(M) =M × Rk →M × Rk given
by the identity map.

(b) The tangent bundle over M is π : TM → M given by π(p, v) = p for every
v ∈ TpM , where TM is the disjoint union of tangent spaces across M ,

TM =
⊔
p∈M

TpM.

Given any smooth chart φ : U ⊆M → Rn with local coordinates (xi) in U , define
Φ : π−1(U) → U × Rn by

Φ

(∑
vi

∂

∂xi

∣∣∣∣
p

)
= (p, (v1, . . . , vn))

This is a local trivialization of TM over U . From this we also notice that the
tangent bundle is of rank n = dimM .

(c) The cotangent bundle over M is π : T ∗M → M given by π(p, ω) = p for every
ω ∈ T ∗

pM , where T ∗M is the disjoint union of dual tangent spaces across M ,

T ∗M =
⊔
p∈M

T ∗
pM.

Given any smooth chart φ : U ⊆M → Rn with local coordinates (xi) in U , define
Φ : π−1(U) → U × Rn by

Φ
(∑

aidxi
∣∣
p

)
= (p, (a1, . . . , an))

This is a local trivialization of T ∗M over U . From this we also notice that the
cotangent bundle is of rank n = dimM .

(d) Define an equivalence relation on R2 by setting (x, y) ∼ (x′, y′) if and only if
(x′, y′) = (x + n, (−1)ny) for some n ∈ Z. Let E = R2/∼ be the quotient space
with natural quotient map q : R2 → E. For any r > 0, the image q([0, 1]×[−r, r]) is
a smooth compact manifold with boundary, called a Mobius band. Let ε : R → S1

be the usual covering of the circle and π1 : R2 → R the projection onto the first
factor. Since ε◦π1 is constant on each equivalence class, it descends to a continuous
map π : E → S1. This is a smooth real line bundle over S1.

Example 2 (Differential of a smooth map). The differential of a smooth map φ :M → N
is a map between tangent bundles, dφ : TM → TN defined on fibers by the formula

dφp(v)(f) = v · (f ◦ φ)

for any p ∈ M , v ∈ TpM and f ∈ C∞(N,R). The notation v · (f ◦ φ) refers to the
tangent vector v acting as a derivation on the smooth function f ◦ φ ∈ C∞(M ;R). (A
priori, this only defines a pointwise differential dφp at each p ∈ M , but it will follow
from the theory developed later that these glue together smoothly to produce a global
map dφ : TM → TN).
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Fact 5. Let π : E →M be a vector bundle. Then

(a) π is a smooth submersion.

(b) π is an open quotient map.

(c) E is non-compact.

Proof. For (a), the quality of being a smooth submersion is a local one. Thus, around
any point in M we take a local trivialization (U,Φ) so that π|π−1(U) = πU ◦ Φ and then
for any point q ∈ π−1(U) we have

dπq = d(πU)Φ(q) ◦ dΦq

which is surjective as a composition of surjective maps (the derivative of πU is a projection,
and the derivative of Φ is an isomorphism). Hence π is a submersion on π−1(U), and
we conclude that π is globally a submersion.

Assertion (b) follows immediately from (a) because a smooth submersion is an open
map, and a continuous, surjective open map is also a quotient map.

For (c), take any open subset U ⊆M over which E is trivial so that E|U ≃ U ×Rk –
this submanifold of E is already non-compact, so there is no way E can be compact.

The following fact relates two local trivializations on their overlap.

Fact 6 (Transition functions). Let π : E →M be a rank-k vector bundle over M , and
let (ϕ, U) and (ψ, V ) be two local trivializations of E with U ∩ V ̸= ∅. Then there exists
a smooth map τ : U ∩ V → GL(k,R) such that

ϕ ◦ ψ−1 : (U ∩ V )× Rk → (U ∩ V )× Rk

has the form (
ϕ ◦ ψ−1

)
(p, v) = (p, τ(p)v).

Proof. Since ϕ and ψ are both local trivializations of the vector bundle, we have

π1 ◦ ψ = π = π1 ◦ ϕ
⇒ π1 ◦

(
ϕ ◦ ψ−1

)
= π1

which implies that ϕ ◦ ψ−1 acts as the identity on the first component, i.e.(
ϕ ◦ ψ−1

)
(p, v) = (p, σ(p, v))

for some smooth map σ : (U ∩ V )× Rk → Rk in the second component. Moreover, for
each fixed p ∈ U ∩ V , the map

Rk → Rk

v 7→ σ(p, v)

is an invertible linear map because both of ϕ and ψ are diffeomorphisms which restrict
to linear isomorphisms on each fiber. Hence for each fixed p ∈ U ∩ V there exists an
invertible matrix τ(p) ∈ GL(k,R) such that σ(p, v) = τ(p)v.
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It remains to check that the map τ : U ∩ V → GL(k,R) is smooth. Let (Ei) be a
basis for Rk and let πi : Rk → R denote the projection onto the ith coordinate, so that

πi

(
k∑

j=1

vjEj

)
= vi.

Let τ ij : U ∩ V → R be at each point p ∈ U ∩ V the (i, j)-entry of τ(p). Evidently then,

τ ij(p) = πj(τ(p)Ei) ⇒ τ ij = πj ◦ σ(·, Ei)

Thus each function τ ij is smooth as a composition of smooth functions. Since matrix
entries form global smooth coordinates for GL(k,R), we conclude that τ is smooth.

The smooth maps τ : U ∩ V → GL(k,R) defined in Fact 6 which relate two
overlapping trivializations for E →M are called transition functions for the vector
bundle.

Typically we want to define a vector bundle over a smooth manifold M by

E =
⊔
p∈M

Ep with π(p, v) = p

i.e. by taking a collection of vector spaces Ep, one for each point p of the base manifold,
and then forming the disjoint union. In order to make such a set into a smooth
vector bundle, we need to construct a manifold topology, a smooth structure, and local
trivializations – in short we need to specify how all of the fibers glue together. The next
thing we will prove is a shortcut: it suffices to construct local trivializations that are
given by smooth transition functions on their overlap.

Lemma 1 (Vector bundle chart lemma). Let E =
⊔

p∈M Ep, and define a map π : E →
M by π(p, v) = p for every v ∈ Ep. Suppose we are given the following data:

(i) An open cover {Uα}α∈A for M .

(ii) For each α ∈ A, a bijective map ϕα : π−1(Uα) → Uα × Rk which restricts to a
linear isomorphism

ϕα|Ep : Ep → {p} × Rk

for every p ∈ Uα.

(iii) For each α, β ∈ A with Uα ∩ Uβ ̸= ∅, a smooth map ταβ : Uα ∩ Uβ → GL(k,R)
such that

ϕα ◦ ϕ−1
β : (Uα ∩ Uβ)× Rk → (Uα ∩ Uβ)× Rk

(ϕα ◦ ϕ−1
β )(p, v) = (p, ταβ(p)v)

Then E admits a unique topology and smooth structure such that π : E →M is a rank-k
vector bundle over M , with {(ϕα, Uα)} as the local trivializations.
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Proof. Let p ∈ M and choose some Uα ⊆ M containing p. Choose a smooth chart
(Vp, φp) for M around p such that Vp ⊆ Uα. Let Ṽ p = φp(Vp) ⊆ Rn and define
φ̃p = (φp × id) ◦ ϕα : π−1(Vp) → Ṽ p × Rk.

π−1(Vp)
ϕα−→ Vp × Rk φp×id−−−→ Ṽ p × Rk ⊆ Rn × Rk

Then the collection of all such charts {(π−1(Vp), φ̃p)}p∈M defines a smooth structure on
E (the maximal smooth atlas generated by these charts). We will check the following
necessary preconditions for π : E →M to be a smooth vector bundle:

• Each map ϕα is a diffeomorphism: with respect to the aforementioned smooth
structure, each map φ̃p is obviously a diffeomorphism, hence each map ϕα =
(φp × id)−1 ◦ φ̃p is a diffeomorphism as a composition of diffeomorphisms.

• π is smooth: take two charts (Vp, φp) for M and (π−1(Vp), φ̃p) for E, then the
coordinate representation of π with respect to these charts is π̂ = φp ◦ π ◦ φ̃−1

p . We
can compute directly that,

π̂(φp(x), y) = φp

(
π
(
φ̃−1
p (φp(x), y)

))
= φp

(
π
(
ϕ−1
α

((
φ−1
p × id

)
(φp(x), y)

)))
= φp

(
π
(
ϕ−1
α (x, y)

))
= (φp ◦ πUα) (x, y)

= φp(x)

which is to say that π̂ is the (smooth) projection Ṽ p × Rk → Ṽ p. We conclude
that π is smooth.

• Bundle structure: the fact that each ϕα is linear on fibers and satisfies π|Uα = π
follows immediately from hypothesis (ii). Hence {(ϕα, Uα)α∈A form local trivializa-
tions for E and π : E →M is indeed a smooth vector bundle.

• Uniqueness of the smooth structure: any smooth structure satisfying the conditions
of the lemma must include the charts {(π−1(Vp), φ̃p)}p∈M . Since our smooth
structure is by definition the maximal smooth atlas generated by these charts,
uniqueness follows.

φp

π−1(Vp) Vp

Ṽ p ×Rk

π

φ̃p

π̂
Ṽ p

ΦαE|Uα Uα × Rk
≃

Uα

π
πUα

Sticking with the above notation, note that for every p ∈M and vector v ∈ Ep:

(p, ταγ(p)v) = ϕα ◦ ϕ−1
γ (p, v)

=
(
ϕα ◦ ϕ−1

β

)
◦
(
ϕβ ◦ ϕ−1

γ

)
(p, v)

=
(
ϕα ◦ ϕ−1

β

)
(p, τβγ(p)v)

= (p, ταβ(p)τβγ(p)v)
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which shows that ταγ = ταβ ◦ τβγ. We summarize this observation with the following:

Fact 7. Let π : E →M be a vector bundle of rank-k over M with local trivializations
{(ϕα, Uα)}α∈A. For each α, β ∈ A with Uα ∩ Uβ ̸= ∅, let ταβ : Uα ∩ Uβ → GL(k,R)
denote the corresponding transition function. Then

ταβ(p)τβγ(p) = ταγ(p)

for each α, β, γ ∈ A and p ∈ Uα ∩ Uβ ∩ Uγ.

Example 3 (Restriction of a vector bundle). Let π : E →M be a rank-k vector bundle
and S ⊆M an embedded submanifold. Define the restriction of E to S to be the set

E|S =
⊔
p∈S

Ep ⊆ E

and define π|S : E|S → S by restricting π to S. Then any local trivialization Φ :
π−1(U) → U × Rk of E over U ⊆M restricts to a diffeomorphism

Φ|U : (π|S)−1(U ∩ S) → (U ∩ S)× Rk

which gives local trivializations for the restricted vector bundle E|S over S.

Example 4 (Pullback bundles). Let π : E → N be a vector bundle and φ :M → N a
smooth map. We want to construct a vector bundle over M which looks like E restricted
to the image of φ. Following this heuristic, we can define E ′

p = Eφ(p) for every p ∈M
and then

E ′ =
⊔
p∈M

Eφ(p)

with a projection map

π′ : E ′ →M

u ∈ Eφ(p) 7→ p ∈M

Notice that u ∈ Eφ(p) if and only if π(u) = φ(p), so we can write E ′ in the following
equivalent way:

E ′ = {(p, u) ∈M × E : π(u) = φ(p)} ⊆M × E

This turns out to be a well-defined vector bundle over M . Instead of writing E ′, the
standard notation for this vector bundle is π∗E. Since the projection map projects onto
the first coordinate of the product M × E, we denote it by pr1 : π

∗E →M .

Example 5 (Dual bundles). Let E →M be a vector bundle. For any p ∈M we can
consider the dual space

E∗
p = {linear functionals Ep → R}

These spaces glue together to assemble a smooth vector bundle E∗ → M with the
obvious projection map.
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Example 6 (Tensor bundles). Let E →M and F →M be two vector bundles over M .
For any p ∈M we can consider the vector space Ep ⊗ Fp. These spaces glue together to
assemble a smooth vector bundle E ⊗ F →M with the obvious projection map.

Example 7 (Hom bundle). Let E → M and F → M be two vector bundles over M .
For any p ∈M we can consider the vector space

Hom(Ep, Fp) = {linear maps α : Ep → Fp}

These glue together to assemble a smooth vector bundle Hom(E,F ) → M with the
obvious projection map. Moreover, we have a canonical isomorphism of vector bundles

Hom(E,F ) ≃ E∗ ⊗ F

which is obtained by gluing together the fiberwise linear isomorphisms Hom(Ep, Fp) ≃
E∗

p ⊗ Fp (cf Fact )

3 Sections of vector bundles
Let π : E → M be a vector bundle. A section of E is a smooth map σ : M → E
satisfying π ◦ σ = idM . For every p ∈M we then have σ(p) ∈ π−1(p) = Ep, so σ sends
points in M to their respective fibers in E. One could also talk about sections with
weaker regularity, e.g. continuous sections, but in this note we will always assume our
sections are smooth unless stated otherwise.

It will often be useful to talk about sections that are defined only on an open subset
of M – i.e. local sections of E. Explicitly, a local section of E over U ⊆M is a smooth
map σ : U ⊆M → E satisfying π ◦ σ = idU , where U ⊆M is an open subset of M . We
could express this more briefly by simply saying that σ is a section of E|U . Whenever we
want to emphasize the “local” distinction, we will refer to sections σ :M → E defined
on all of M as global sections of E.

Example 8 (Sections of vector bundles). Let M be a smooth manifold.

(a) Given any vector bundle E → M , there is always at least one section: the zero
section σ :M → E defined by σ(x) = 0 ∈ Ex for every x ∈M .

(b) The sections of the tangent bundle TM are precisely the vector fields on M . We
use the notation X(M) = Γ(TM).

(c) The sections of the cotangent bundle T ∗M are precisely the differential 1-forms
on M . We use the notation Ω1(M) = Γ(T ∗M).

(d) In general, sections of the tensor bundle T k(T ∗M) are the covariant k-tensor fields
on M .

(e) In general, sections of the alternating tensor bundle Λk(T ∗M) are precisely the
differential k-forms on M , i.e. Ωk(M) = Γ(ΛkT ∗M).
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(f) Let E =M ×Rk be the rank-k trivial bundle over M . Then any smooth function
f : M → Rk defines a section σf : M → M × Rk given by σf(x) = (x, f(x)).
Conversely, every section σ arises in this way from some smooth function M → Rk,
namely f = πRk ◦ σ. Thus we have a one-to-one correspondence between sections
of a trivial bundle and smooth functions on M .

Let E → M be a vector bundle and U ⊆ M any open subset. Then the set of all
local sections of E|U is an (infinite-dimensional) real vector space, and also a C∞(U)-
module, which we denote by the symbol Γ(E|U ). This algebraic structure comes from the
operations happening at the level of fibers; explicitly, given local sections s1, s2 ∈ Γ(E|U )
and c, d ∈ R, the vector space structure is naturally given by

(cs1 + ds2)(p) = cs1(p) + ds2(p)

for every p ∈ U . The C∞(U)-module structure is naturally given by

(fs)(p) = f(p)s(p)

for any local section s ∈ Γ(E|U), any f ∈ C∞(U), and p ∈ U . Evidently, all of the
operations are happening at the level of fibers. We will use the symbol Γ(E) to denote
global sections of E.

Lemma 2 (Local section extension lemma). Let M be a smooth manifold and π : E →M
a vector bundle over M . Let A ⊆ M be a closed subset, and suppose that σ : A → E
is a section which is smooth in the sense that it extends to a smooth local section in a
neighborhood of each point on ∂A.

Then σ extends to a global section in an arbitrarily small way. That is: for any open
subset U ⊆M containing A, there exists a global section σ̃ ∈ Γ(E) satisfying σ̃|A = σ
and supp σ̃ ⊆ U .

Proof. Fix some open subset U ⊆M containing A. By the smoothness assumption on
σ, we can find an open set V ⊆M such that A ⊆ V ⊆ U and then extend σ to a local
section σ : V ⊆M → E on V . Specifically, the open set V is constructed by extending
σ in a neighborhood of each point on ∂A, and then intersecting with U if necessary.
Now since A is closed, we can find a smooth bump function ψ :M → R for A supported
on V , and then define

σ̃ =

{
ψσ on V
0 on M \ V

Evidently σ̃|A = (ψσ)|A = σ because ψ = 1 identically on A, and supp σ̃ ⊆ V ⊆ U .

Let E →M be a rank-k vector bundle and U ⊆M an open subset. A local frame
for E over U is an ordered k-tuple (σ1, . . . , σk) of local sections over U such that, for
every p ∈ U , (σ1(p), . . . , σk(p)) is a basis for the fiber Ep. If U = M then we call it a
global frame for E.

Local frames are closely related to local trivializations: we will prove now that they
essentially carry the same information about the vector bundle. First of all, take a
local trivialization Φ : π−1(U) → U × Rk for E – we shall construct a corresponding
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local frame for E over U . Let (e1, . . . , ek) denote the standard basis for Rk and for each
1 ≤ i ≤ k define maps

σi : U ⊆M → E

σi(x) = Φ−1(x, ei)

Then each σi is smooth because Φ is a diffeomorphism, and

(π ◦ σi)(x) = (πU ◦ Φ) ◦ σi(x) = πU(x, ei) = x

for every x ∈ U , so π ◦ σi = idU and σi is a local section for E over U . To see that
(σ1(x), . . . , σk(x)) forms a basis for Ex, just note that the k-tuple ((x, ei)) forms a basis
for {x} × Rk and Φ restricts to a linear isomorphism

Φ|Ex : Ex
≃−→ {x} × Rk

and (σi(x)) is the image of the basis ((x, ei)) under the inverse isomorphism (Φ|Ex)
−1.

Thus, (σi) is a local frame for E over U , called the local frame associated with the
local trivialization Φ.

Notice that for x ∈ U we can express any v ∈ Ex in terms of this local frame as

v =
∑
i

viσi(x)

for some vi ∈ R, and therefore the value of Φ on any fiber must be given by

Φ|Ex

(∑
i

viσi(x)

)
=
∑
i

viΦ|Ex(σi(x))

=
∑
i

vi(x, ei)

=
∑
i

(x, viei)

= (x, (v1, . . . , vk))

As a result, we see conversely that any local frame (σi) for E over U should uniquely
determine a local trivialization of E according to this formula. We summarize the
preceding discussion with the following key fact:

Fact 8 (Correspondence between local frames and trivializations). Let π : E →M be a
rank-k vector bundle. Local frames are equivalent to local trivializations in the following
sense:

(i) Given a local trivialization Φ : π−1(U) → U × Rk for E we get a local frame
(σ1, . . . , σk) for E on U , defined by σi(x) = Φ−1(x, ei) for every x ∈ U .

(ii) Given a local frame (σ1, . . . , σk) for E on an open subset U ⊆M , we get a local
trivialization Φ : π−1(U) → U × Rk satisfying

Φ|Ex

(∑
i

viσi(x)

)
= (x, (v1, . . . , vk))

for every x ∈ U .



12

Proof. We have already proven (i) in the preceding discussion, so it only remains to
prove (ii). Let’s define a map Ψ : U × Rk → π−1(U) by

Ψ(x, (v1, . . . , vk)) =
∑
i

viσi(x).

We will show that Ψ is a diffeomorphism, so that the inverse Ψ−1 gives the desired
local trivialization in (ii). In fact, since Ψ is clearly bijective it suffices to show that
Ψ is a local diffeomorphism. To that end let V ⊆ U be an arbitrary open subset of M
such that we have a local trivialization ΦV : π−1(V ) → V × Rk for E. Since ΦV is a
diffeomorphism it will suffice to show that the map ΦV ◦ Ψ : V × Rk → V × Rk is a
diffeomorphism.

Restricting each σi to V we get smooth maps ΦV ◦ σi : V → V × Rk, hence we can
write

(ΦV ◦ σi)(x) = (x, (σ1
i (x), . . . , σ

k
i (x)))

for some smooth functions σj
i : V → R. For each x ∈ V we have

(ΦV ◦Ψ)(x, (v1, . . . , vk)) = ΦV

(∑
i

viσi(x)

)
=
∑
i

viΦV (σi(x))

=
∑
i

vi(x, (σ1
i (x), . . . , σ

k
i (x)))

=

(
x,

(∑
i

viσ1
i (x), . . . ,

∑
i

viσk
i (x)

))

which is smooth since each function σj
i is smooth on V . Moreover, we can show that

(ΦV ◦ Ψ)−1 is also smooth: for each x ∈ V let (σj
i (x)) denote the invertible matrix

determined by the smooth functions σj
i and let (τ ji (x)) = (σj

i (x))
−1 denote the inverse

matrix. Note that the functions τ ji are smooth on V because matrix inversion is a
smooth operation. Thus (ΦV ◦Ψ)−1 must satisfy

(ΦV ◦Ψ)−1(x, (w1, . . . , wk)) = (x, (v1, . . . , vk))

whenever
(w1, . . . , wk) = (σj

i (x))(v
1, . . . , vk)

which is to say that

(ΦV ◦Ψ)−1(x, (w1, . . . , wk)) = (x, (τ ji (x))(w
1, . . . , wk))

=

(
x,

(∑
i

wiτ 1i (x), . . . ,
∑
i

wiτ ki (x)

))

and this is smooth since each function τ ji is smooth on V . In summary, we have shown
that ΦV ◦Ψ is a local diffeomorphism, hence Ψ is a local diffeomorphism. Since Ψ is
also bijective we conclude that Ψ is a diffeomorphism. The inverse diffeomorphism
Ψ−1 : π−1(U) → U × Rk is the desired local trivialization associated with the local
frame.
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Corollary 1. A vector bundle is trivial if and only if it admits a global frame.

Proof. By definition, a vector bundle E → M is trivial if and only if it admits a
global trivialization E →M × Rk, which, by the above correspondence, is equivalent to
admitting a global frame.

Let M be an n-dimensional smooth manifold, E →M a rank-k vector bundle, and
let (σi) be a local frame for E over an open subset U ⊆ M , with corresponding local
trivialization Φ : π−1(U) → U × Rk. Let s : U ⊆ M → E|U be any (not necessarily
smooth) local section. With respect to the chosen local frame, we can write

s =
∑
i

f iσi

for some collection of functions f i : U → R, called the component functions for s
with respect to this local frame. We would like to show, as should be expected, that
s is smooth if and only if its component functions are smooth. Take a smooth chart
φ : U ⊆M → Rn for M , then we can represent s in local coordinates as

ŝ = π2 ◦ Φ ◦ s ◦ φ−1 : φ(V ) ⊆ Rn → Rk

and evidently s is smooth if and only if ŝ is smooth. For any p ∈ U we calculate

ŝ(p) = π2(Φ(s(φ
−1(p))))

= π2

(
Φ

(∑
i

f i(φ−1(p))σi(φ
−1(p))

))
= π2(φ

−1(p), (f 1(φ−1(p)), . . . , fk(φ−1(p))))

= (f 1(φ−1(p)), . . . , fk(φ−1(p)))

hence ŝ is smooth if and only if the component functions f 1, . . . , fk are smooth. We
summarize this result in the following fact.

Fact 9. Let π : E →M be a vector bundle and s :M → E a (not necessarily smooth)
section. Let (σi) be a local frame for E on an open subset U ⊆M . Then s is smooth on
U if and only if its component functions with respect to (σi) are smooth.

Fact 10. Let E1, E2 →M be vector bundles. We have a C∞(M)-module isomorphism

Γ(E1 ⊗R E2)
≃−→ Γ(E1)⊗C∞(M) Γ(E2)

We introduce a slightly more general notion of section: sections along a smooth map.
Given a vector bundle π : E → N and a smooth map φ : M → N , a section of E
along φ is a smooth map s :M → E such that s(p) ∈ Eφ(p) for every p ∈M . Of course,
we can restrict to an open subset U ⊆M and consider local sections along φ, i.e. any
smooth map s : U ⊆M → E satisfying s(p) ∈ Eφ(p) for every p ∈ U . We introduce the
following notation:

Γφ(E) = sections of E along φ
Γφ(U,E) = local sections of E along φ, defined on U ⊆M
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Heuristically, a section s ∈ Γφ(E) is like a section of E restricted to the image of φ.
Immediately from the definition we find a one-to-one correspondence

Γφ(E) ≃ Γ(φ∗E).

Indeed, if σ ∈ Γ(φ∗E) is a section of the pullback bundle then σ is by definition a map

σ :M → φ∗(E) with s(p) ∈ (φ∗E)p

for every p ∈M , where the fibers are

(φ∗E)p = {p} × Eφ(p).

Hence σ sends points p ∈ M into (φ∗E)p if and only if pr2 ◦σ sends points p ∈ M
into Eφ(p), and the one-to-one correspondence follows by simply identifying any section
σ ∈ Γ(φ∗E) with the section pr2 ◦σ ∈ Γφ(E). As a consequence of this correspondence,
the space of sections along a map is not really anything new; all the previous results
we’ve developed for the sections can be applied in the same way (for example, the
construction of local frames).

Remark. Notice that by choosing φ = id : N → N we find that

Γid(E) = Γ(id∗E) = Γ(E)

and so we recover the basic notion of a section of E → N .

Example 9 (Sections along a smooth curve). For example we could consider vector
fields along a smooth curve γ : R → N . By definition this is a smooth map X : (a, b) ⊆
R → TM satisfying X(t) ∈ Tγ(t)M for every t ∈ (a, b). The most obvious example of
such a vector field is the curve’s velocity γ′(t) since γ′(t) ∈ Tγ(t)M for every t.

An easy way to construct a section of E along φ is to simply compose a section of
E with φ: for any section s ∈ Γ(E), the map s̃ = s ◦ φ defines a section of E along
φ because ˜s(p) = s(φ(p)) ∈ Eφ(p) for every p ∈ M . However, not every section of E
along φ is of this form; in fact, sections of this form locally generate Γφ(E) over C∞(M).
Take a local frame (σi) for E over some open subset W ⊆ N , then for every q ∈ W and
u ∈ Eq we can write

u =
∑
i

uiσi(q)

for some ui ∈ R. In particular, taking p ∈ φ−1(W ) ⊆M and q = φ(p) ∈ W we have

u =
∑
i

uiσi(φ(p))

for every u ∈ Eφ(p), where ui ∈ R depend smoothly on p. Thus the collection (σi ◦ φ) of
local sections along φ (defined on φ−1(W ) ⊆M) locally generate Γφ(E) over C∞(M),
because for any section s̃ ∈ Γφ(E) we can write (following the above)

s̃ =
∑
i

f i(σi ◦ φ)

for some smooth functions f i locally defined on φ−1(W ) ⊆M . We summarize this as
follows:
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Fact 11. Let E → N be a vector bundle and φ :M → N a smooth map. The space Γφ(E)
of sections along E is locally generated over C∞(M) by the sections s̃ = s ◦ φ ∈ Γφ(E)
where s is a local section of E. More precisely:

For any s̃ ∈ Γφ(E), we can find an open subset U ⊆M , smooth
functions f i ∈ C∞(U), and local sections si ∈ Γ(E) such that

s̃|U =
∑
i

f i(si ◦ φ)
(4)

4 Bundle homomorphisms
Let M be a smooth manifold and π : E → M and π′ : E ′ → M two vector bundles
over M . A bundle homomorphism between these vector bundles is a smooth map
F : E → E ′ satisfying:

(i) π = π′ ◦ F .

(ii) For every x ∈M , the restriction F |Ex : Ex → E ′
x is a linear map.

Note that condition (i) says that F must send the fiber Ex to the fiber E ′
x, so condition

(ii) makes sense.
Let E,E ′ →M be two vector bundles. A bijective bundle homomorphism F : E →

E ′ whose inverse is also a bundle homomorphism is called a bundle isomorphism
over f, and we say that E and E ′ are isomorphic vector bundles.

Fact 12. Suppose E → M and E ′ → M are vector bundles over a smooth manifold
M , and F : E → E ′ is a bijective bundle homomorphism over M . Then F is a bundle
isomorphism over M .

In algebra we typically use the symbol Hom(A,B) to denote the set of morphisms
between two objects of some category. In the case of vector bundles however, the symbol
Hom(E,E ′) does not stand for the set of morphisms between two vector bundles E and
E ′ over some manifold M . We use the symbol Hom(E,E ′) to denote the vector bundle
over M whose fibers are spaces Hom(Ep, E

′
p) of linear maps. That is,

Hom(E,E ′) =
⊔
p∈M

Hom(Ep, E
′
p) →M

In fact, a bundle homomorphism E → E ′ over M is exactly a section of the vector
bundle Hom(E,E ′) → M . Indeed, a section s ∈ Γ(Hom(E,E ′)) is by definition a
smooth map s : M → Hom(E,E ′) such that s(p) : Ep → E ′

p is a linear map for every
p ∈M , thus it determines a vector bundle homomorphism E → E ′ given by s(p) on the
fiber Ep. Conversely, any vector bundle homomorphism can be considered as a section
of Γ(Hom(E,E ′)) in the same way. This establishes the following fact:

Fact 13. For any vector bundles E →M and E ′ →M we have

Γ(Hom(E,E ′)) = {bundle homomorphisms E → E ′}

and in particular when E = E ′ we have

Γ(End(E)) = {bundle endomorphisms E → E}.
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When we defined the notion of a vector bundle, the first question we considered was:
when does gluing together a collection of vector spaces Ep produce a genuine vector
bundle? This question reflects the way vector bundles tend to arise in practice, and we
formulated the vector bundle chart lemma (Lemma 1) to answer that question. In the
same way, it is natural to wonder: when does gluing together a collection of linear maps
Ep → E ′

p between fibers produce a genuine bundle homomorphism E → E ′? First of all,
note that the conditions (i) and (ii) from the definition of bundle homomorphism are
already satisfied by assumption, so all that remains is smoothness.

Fact 14. Let π : E →M and π′ : E ′ →M be two vector bundles over M . Suppose that
for every p ∈M we have a linear map Fp : Ep → E ′

p, and we define a map F : E → E ′

by F |Ep = Fp for every p ∈M . Then F is smooth (hence a bundle homomorphism over
M) if and only if

s ∈ Γ(E|U) ⇒ F ◦ s ∈ Γ(E ′|U)
for every local section s ∈ Γ(E|U).

Proof. If F is smooth then obviously F ◦ s is smooth for every local section s ∈ Γ(E|U ),
so F ◦ s ∈ Γ(E ′|U). Conversely, let p ∈ M and take an open neighborhood U ⊆ M
around p. Shrinking U if necessary, take local frames (ei) for E|U and (e′j) for E ′|U .

Since by assumption F maps smooth sections to smooth sections, we have F ◦ ei ∈
Γ(E ′|U ) for every i and thus we can find smooth component functions f j

i ∈ C∞(U) such
that

F ◦ ei =
∑
j

f j
i e

′
j ∈ Γ(E ′|U)

Let Φ : E|U → U × Rk be the local trivialization for E associated with the local frame
(ei). For any v ∈ E|U we can write

v =
∑
i

viei(π(v))

for some components vi ∈ R, and by the construction from Fact 8, Φ satisfies

v =
∑
i

viei(π(v)) = Φ−1(π(v), (v1, . . . , vk)).

For any (x, b) ∈ U × Rk we calculate

(
F ◦ Φ−1

)
(x, b) = F

(∑
i

biei(x)

)
=
∑
i

biFx(ei(x))

=
∑
i

∑
j

bif j
i (x)e

′
j(x)

which is smooth since all the involved functions are smooth. Hence F ◦ Φ−1 is smooth
and we conclude that F is smooth.

Now we will use the results of this section to extend the linear isomorphisms from
Facts 7, 2, 3 to vector bundle isomorphisms.
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Fact 15. Let E1, E2 →M be vector bundles. Then we have bundle isomorphisms

(i) E∗
1 ⊗ E2 ≃ Hom(E1, E2)

(ii) Λk(E∗
1) ≃ (ΛkE1)

∗

(iii) Hom(ΛkE1, E2) ≃ Alt(Ek
1 , E2)

Proof. We will prove (i) here. The other two isomorphisms follow a similar pattern,
just with more arduous notation. By Fact 12 it suffices to construct a bijective bundle
homomorphism

F : E∗
1 ⊗ E2 → Hom(E1, E2)

Heuristically, in order to produce this map we should glue together the linear isomor-
phisms from Fact 7 along each fiber of E∗

1 ⊗ E2. Thus, we take the natural linear
isomorphisms

Fp : (E
∗
1)p ⊗ (E2)p

≃−→ Hom((E1)p, (E2)p)

given by Fact 7 and define
F |(E∗

1 )p⊗(E2)p = Fp

for every p ∈M . Then F is bijective and we just need to check that it’s smooth. Take
local frames (ei) for E1 and (fj) for E2 over some open subset U ⊆M , and let (ei) = (e∗i )
be the dual frame for E∗

1 . Thus, every smooth local section s ∈ Γ(E∗
1 ⊗ E2|U) can be

expressed as
s =

∑
i,j

sjie
i ⊗ fj

for some smooth functions sji ∈ C∞(U). By Fact 14 it suffices to show that F ◦ s is a
smooth local section of Hom(E1, E2). But this is easy to see from the expression

(F ◦ s)(p) = Fp(s(p))

=
∑
i,j

sji (p)Fp(e
i(p)⊗ fj(p))

=
∑
i,j

sji (p)e
i(p)(•)fj(p) ∈ Hom((E1)p, (E2)p)

because this is precisely an expression for F ◦ s in terms of a smooth local frame with
smooth coefficient functions.

5 Subbundles
Let πE : E →M be a vector bundle. A subbundle of E is a vector bundle πD : D →M
such that

(i) D ⊆ E is an embedded submanifold.

(ii) πD = πE|D.

(iii) For every p ∈ M , the fiber of D over p is Dp = D ∩ Ep, a linear subspace of Ep

with vector space structure inherited from Ep.
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First of all, note that the statement that D →M is a vector bundle implies that all of
the fibers of D are nonempty and that they have the same dimension. Moreover, notice
that conditions (i)-(iii) essentially amount to demanding that the inclusion i : D ↪→ E
be a bundle homomorphism.

Fact 16. Let πE : E →M be a vector bundle and πD : D →M a subbundle. Then the
inclusion map i : D ↪→ E is a bundle homomorphism over M .

Proof. Condition (i) requiring that D be an embedded submanifold ensures that the
inclusion is a smooth map between manifolds (a smooth embedding, in fact). The
inclusion is linear on fibers because by condition (iii) of the definition the inclusion
restricts to the linear inclusion i|Dp : Dp ↪→ Ep on each fiber. Finally, condition (ii) is
the same as saying that πE ◦ i = πD.

The most natural way to define a subbundle of πE : E → M is to specify a linear
subspace Dp ⊆ Ep for each p ∈M , and then define

D =
⊔
p∈M

Dp ⊆ E

with projection πD = πE|D. The question arises: when does this construction genuinely
define a subbundle of E? The following fact provides a convenient condition that one
can check:

Fact 17 (Local frame criterion for subbundles). Let πE : E → M be a vector bundle,
and for every p ∈M let Dp ⊆ Ep be a linear subspace with dimDp = ℓ. Define

D =
⊔
p∈M

Dp and πD = πE|D

Then πD : D → M is a smooth subbundle if and only if the following condition is
satisfied:

For every p ∈ M there exists an open neighborhood U ⊆ M
around p and smooth local sections σ1, . . . , σℓ ∈ Γ(E|U ) such that
(σ1(q), . . . , σℓ(q)) forms a basis for Dq for every q ∈ U .

(5)

This condition says, in other words, that D is locally spanned by sections of E.

Proof. First suppose that D ⊆ E is a smooth subbundle. Then around every p ∈M we
can find a local trivialization (U, ϕ) for D, which gives us an associated local frame for
D over U , say (τ1, . . . , τℓ) where each τj : U ⊆M → D is a local section of D. Thus the
local sections for E that satisfy condition (5) can be defined as σj = i ◦ τj : U → E.

Conversely, suppose that D satisfies condition (5), and say rankE = k. Note that
D satisifies conditions (ii) and (iii) in the definition of subbundle by hypothesis, so we
just need to check that D ⊆ E is an embedded submanifold and that πD : D →M is a
vector bundle.

To see that D is an embedded submanifold, take any p ∈ M and let (σ1, . . . , σℓ)
be an array of smooth local sections for E defined on an open neighborhood U ⊆ M
around p, as given by condition (5). Complete this array to get a smooth local frame
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(σ1, . . . , σℓ, σℓ+1, . . . , σk) for E on U , and let ϕ : π−1(U) → U × Rk be the associated
local trivialization for E. Thus, by definition,

ϕ(a1σ1(q) + · · ·+ akσk(q)) = (q, (a1, . . . , ak))

for every q ∈ U . By definition of (σ1, . . . , σk) extending (σ1, . . . , σℓ), the diffeomorphism
ϕ restricts to a diffeomorphism

ϕ : D ∩ π−1(U)
≃−→ {(q, (a1, . . . , aℓ, 0, . . . , 0))} ⊆ U × Rk

so the fact that Rℓ is an embedded submanifold of Rk implies that D ∩ π−1(U) is an
embedded submanifold of π−1(U). Repeating this argument in a neighborhood of every
point p ∈M , we conclude that D is an embedded submanifold of E.

As for the assertion that πD : D → M defines a vector bundle, construct local
trivializations for D by

ψ : D ∩ π−1(U) → U ∩ Rℓ

ψ(a1σ1(q) + · · ·+ aℓσℓ(q)) = (q, (a1, . . . , ak))

for every q ∈ U . We conclude that πD : D →M is a vector bundle, hence a subbundle
of E.

Example 10 (Subbundles).

(a) Let M be a smooth manifold and X a nonvanishing smooth vector vfield on
M . Then D ⊆ TM given by Dp = span(Xp) for every p ∈ M defines a smooth
1-dimensional subbundle of TM .

(b) Slightly more generally, a smooth k-dimensional subbundle of TM defined as the
span of k pointwise linearly independent smooth vector fields on M ,

D = span{X1, . . . , Xk} ⊆ TM

is called a rank-k distribution on M .

(c) Tangent bundle of an immersed submanifold defines a subbundle of the restriction.

Linear algebra tells us that kernels and images of linear maps are linear subspaces.
Thus it’s natural to wonder whether taking a bundle homomorphism, restricting to each
fiber, then gluing together the kernels (or images) will produce a subbundle. However,
this can go wrong in a very trivial way: the kernels or images of a bundle homomorphism
do not necessarily all have the same dimension (i.e. the homomorphism may not
necessarily have the same rank on each fiber). Obviously, this would preclude us from
combining the kernels or images to form a subbundle. This can be illustrated with a
few simple examples:

Example 11.
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(a) Consider the trivial line bundle E = [0, 1] × R → [0, 1] and define a bundle
homomorphism

ϕ : E → E, ϕ(x, t) = (x, tx)

Then (x, t) ∈ KerE means that (x, t) is a pair such that tx = 0. Thus we have
two cases for the fibers of E,{

x = 0 ⇒ tx = 0 for any t ∈ R
x ̸= 0 ⇒ tx = 0 for t = 0 only

so the kernel over x = 0 is 1-dimensional and the kernel over any x ≠ 0 is
0-dimensional. It’s clear from this example that Kerϕ is not a subbundle of ϕ
(its fibers do not even have the same dimension) and, of course, ϕ does not have
constant rank.

(b) Consider the trivial rank-2 bundle over the circle, S1 × R2 → S1. For each θ ∈ S1

define a linear map fθ : R2 → R2 on the θ-fiber by fixing e1 and rotating e2
through an angle of θ. Using these linear maps on the fibers, we get a bundle
homomorphism

f : S1 × R2 → S1 × R2

f(θ, v) = (θ, fθ(v))

It’s easy to check that

θ = 0 ⇒ ker f0 = {y = −x}
θ = π ⇒ ker fπ = {y = x}

θ ̸= 0, π ⇒ ker fθ = 0

so f does not have constant rank, and ker f is not a subbundle.

To be precise: given two vector bundles E →M and E ′ →M overM and F : E → E ′

a bundle homomorphism over M , for each p ∈M the rank of F at p is the rank of the
linear map F |Ep : Ep → E ′

p. Say that F has constant rank if it has the same rank at
every point p ∈M .

Fortunately, it just so happens that the aforementioned failure of constant rank is
the only way the kernels or images can fail to assemble a subbundle. This is the content
of the following fact:

Fact 18. Let E →M and E ′ →M be vector bundles over M and let F : E → E ′ be a
vector bundle homomorphism. Then the following are equivalent:

(i) F has constant rank.

(ii) KerF is a subbundle of E

(iii) ImF is a subbundle of E ′

Another method for constructing interesting subbundles:



21

Fact 19 (Orthogonal complement bundles). Let M ⊆ Rn be an immersed submanifold
of Euclidean space, and let D ⊆ TRn|M be a rank-k subbundle. Define

D⊥ =
⊔
p∈M

D⊥
p ⊆

Then D⊥ →M is a rank-(n− k) subbundle of TRn|M called the orthogonal comple-
ment of D.

Proof. Gram-Schmidt process at the level of fibers plus the local frame criterion.

Example 12 (The vertical bundle). Let π : E → M be a vector bundle, and let
πTE : TE → E and πTM : TM →M be projection maps for the tangent bundles. Then
dπ : TE → TM is a bundle homomorphism over π and it has constant rank because π
is a submersion, so the kernel

Ker dπ =
⊔
u∈E

ker dπu ⊆ TE

is a submanifold of TE which we denote by V E = Ker dπ. Fact 18 tells us that this
gives us a vector bundle over E

πV = (πTE)|V E : V E → E

defined by πV (u, ξ) = u for every u ∈ E and ξ ∈ ker dπu, and that this is a subbundle
of πTE : TE → E. We call πV : V E → E the vertical bundle of E. Note that the
rank of the vertical bundle V E is equal to the rank of E: for any u ∈ E the fiber
VuE = ker dπu ⊆ TuE has dimension

dimker dπu = dimTuE − rank dπu = dimE − dimTπ(u)M = rankE

where we have used the fact that dπu has full rank because π is a submersion. Thus
rankV E = rankE.

6 Hom-Gamma correspondence
Let E →M and E ′ →M be two vector bundles and let β : Γ(E) → Γ(E ′) be a linear
operator between global section spaces. We define the following two notions:

1. β is a local operator if the action of β is locally determined, i.e. if for any two
sections s1, s2 ∈ Γ(E) we have

s1|U = s2|U ⇒ β(s1)|U = β(s2)|U

for every open subset U ⊆M . Since β is linear, this is equivalent to saying that

s|U = 0 ⇒ β(s)|U = 0

for every open subset U ⊆M .
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2. β is a point operator if the action of β is determined pointwise, i.e. if for any
two sections s1, s2 ∈ Γ(E) we have

s1(p) = s2(p) ⇒ β(s1)(p) = β(s2)(p)

for every point p ∈M . Since β is linear, this is equivalent to saying that

s(p) = 0 ⇒ β(s)(p) = 0

for every p ∈M .

It’s clear that every point operator is a local operator, but the converse is not true.

Example 13 (Local operators and point operators).

(a) Differentiation on R is a local operator on smooth functions:

d

dt
: C∞(R) → C∞(R)

f(t) 7→ f ′(t)

because the slope of the tangent line at a point (t0, f(t0)) is determined by the values
f(t) for t in an arbitrarily small neighborhood around t0. It’s easy to construct
simple examples showing that differentiation is not a point operator; for example,
f(t) = t and g(t) = t2 both have f(1) = 1 = g(1) but f ′(1) = 1 ̸= 2 = g′(1).

(b) More generally, vector fields X ∈ Γ(TM) acting as derivations on C∞(M) are
local operators but not point operators.

(c) The exterior derivative d : Ωk(M) → Ωk+1(M) is a local operator but not a point
operator.

In general, we should expect that operators involving differentiation will be local
operators but not point operators. This is essentially because differentiation is not a
C∞(M)-linear operation (instead, it follows the product rule).

Fact 20. Let E → M and E ′ → M be two vector bundles, and let β : Γ(E) → Γ(E ′)
be an R-linear map. Then β acts pointwise if and only if it is C∞(M)-linear, meaning
β(fs) = fβ(s) for every f ∈ C∞(M) and s ∈ Γ(E).

Proof. Suppose that β is C∞(M)-linear.

• We will show first that β acts locally. Suppose σ ≡ 0 in some open subset U ⊆M .
Given p ∈ U , let ψ ∈ C∞(M) be a smooth bump function supported in U with
ψ(p) = 1. Then ψσ ≡ 0 on M because σ vanishes inside U and ψ vanishes outside
U . Since β is C∞(M)-linear we have

0 = β(ψσ) = ψβ(σ)

and evaluating at p ∈M yields β(σ)(p) = 0. Since this holds for every p ∈ U , we
conclude that β(σ) = 0 on U and thus β acts locally.
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• Now let’s show that β actually acts pointwise. Suppose that σ(p) = 0. Let
(σ1, . . . , σk) be a local frame for E in some open neighborhood U of p in M . Write

σ =
∑
i

f iσi

with respect to this frame; each f i : U → R is smooth. Since σ(p) = 0 we deduce
that f i(p) = 0 for each 1 ≤ i ≤ k.

By the local section extension lemma (Lemma 2), we can find smooth global
sections σ̃i ∈ Γ(E) extending σi, and smooth functions F i ∈ C∞(M) extending
f i, in a neighborhood of p. In particular F i(p) = 0 for each 1 ≤ i ≤ k. Thus
σ =

∑
i F

iσi in a neighborhood of p, and β is a local operator, so

β(σ)(p) = β

(∑
i

F iσi

)
(p)

=
∑
i

F i(p)β (σ̃i) (p)

= 0

(where in the second line we again used that β is C∞(M)-linear) and we conclude
that β acts pointwise.

Conversely, suppose that β acts pointwise and take any f ∈ C∞(M). We want to
show that β(fs) = fβ(s) for any s ∈ Γ(E); that is to say,

β(fs)(p) = (fβ(s))(p)

for every section s and p ∈M . First of all, note that we have

(fβ(s))(p) = f(p)β(s)(p) (6)

simply by definition. Set s2 = fs− f(p)s ∈ Γ(E), then

s2(p) = f(p)s(p)− f(p)s(p) = 0

implies that β(s2)(p) = 0 since β acts pointwise. Thus

β(fs)(p) = β(f(p)s)(p) (7)

for every p ∈M , and we conclude that

β(fs)(p)
(7)
= β(f(p)s)(p) = f(p)β(s)(p)

(6)
= (fβ(s))(p)

hence β is C∞(M)-linear as desired.

Remark. Here’s how Fact 20 typically comes up. Say we have a point operator
β : Γ(E) → Γ(E ′). Then it makes good sense to have β act directly on vectors in the
fibers of E, because those vectors could be extended to sections in an arbitrary way. So,
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for example if we have a tensor field A ∈ Γ(T kT ∗M), then (as one can readily verify) it
defines a map A : Xk(M) → C∞(M) via the formula

A(X1, . . . , Xk)(p) = Ap(X1|p, . . . , Xk|p)

which is C∞(M)-linear in each component. By Fact 20 this map acts pointwise in each
component, and consequently it makes good sense to write A(v1, . . . , vk) for any vectors
v1, . . . , vk ∈ TpM .

Local operators are well-behaved with respect to restriction to open subsets.

Fact 21 (Restriction of a local operator). Local operators are well-behaved with respect
to restriction to open subsets.

We can glue together local operators defined on open subsets to produce a well-defined
local operator which is defined globally.

Fact 22. Let E →M and E ′ →M be vector bundles and let {Ui}i∈I be an open cover
of M . Suppose we have a collection of local operators

{βi : Γ(E|Ui
) → Γ(E ′|Ui

) : i ∈ I}

such that
βi|Ui∩Uj

= βj|Ui∩Uj
whenever Ui ∩ Uj ̸= ∅.

Then there exists a unique local operator β : Γ(E) → Γ(E ′) satisfying β|Ui
= βi for every

i ∈ I.

Corollary 2. Local operators can be reconstructed from all of their restrictions. They
are completely determined by their local restrictions.

Let E → M and E ′ → M be vector bundles with corresponding global section
spaces Γ(E) and Γ(E ′). Any bundle homomorphism F : E → E ′ induces a map
F∗ : Γ(E) → Γ(E ′) given by F∗(s) = F ◦ s; the latter is clearly a smooth section of E ′.
Moreover, F∗ is clearly linear over R because F is linear on fibers; in fact, F∗ is actually
linear over C∞(M) because for any u1, u2 ∈ C∞(M) and s1, s2 ∈ Γ(E) we calculate

F∗(u1s1 + u2s2) = F ◦ (u1s1 + u2s2)

= u1(F ◦ s1) + u2(F ◦ s2)
= u1F∗(s1) + u2F∗(s2)

since F is linear on each fiber. As a result, we have defined a map

Φ C∞ − linear maps
Γ(E) → Γ(E ′)

Bundle homomorphisms
E → E ′ (8)

given by Φ(F ) = F∗. In fact, we will show that this is a bijective correspondence;
any C∞(M)-linear map between sections is induced by a unique bundle homomorphism.
Therefore, we can write equation (8) symbolically as an isomorphism of C∞(M)-modules,

Γ(Hom(E,E ′)) ≃ Hom(Γ(E),Γ(E ′))
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where the left-hand follows from Fact 13, and on the right-side the “Hom” stands
for morphisms in the category of C∞(M)-modules. In other words, interchanging
the symbols Hom and Γ is mathematically justified. This is the reason for the name
“Hom-Gamma correspondence”.

Lemma 3. Let π : E →M be a vector bundle, take any p ∈M and v ∈ Ep. Then there
exists a global section s ∈ Γ(E) with s(p) = v.

Proof. It suffices to construct a local section s : U ⊆ M → E in a neighborhood U
around p with s(p) = v, then we can use a smooth bump function supported on U to
extend s and get the desired global section.

With this in mind, take a local trivialization ϕ : E|U → U×Rk in some neighborhood
U of p, and take the associated local frame (σ1, . . . , σk) on U . Then we can express v
uniquely in terms of this local frame as

v = v1σ1(q) + · · · vkσk(q)

for some q ∈ U and vi ∈ R. Define s : U ⊆M → E|U by

s(p) = v1σ1(p) + · · ·+ vkσk(p)

for every p ∈ U . Clearly s(p) = v and s is a smooth local section as a linear combination
of smooth local sections.

In order to show that the above map Φ is a bijective correspondence, we need to
show that each C∞(M)-linear map β : Γ(E) → Γ(E ′) comes from a unique bundle
homomorphism. The first step is to show that this is true at the level of fibers, which is
the content of the following lemma.

Lemma 4. Let π : E → M and π′ : E ′ → M be two vector bundles over M . Let
β : Γ(E) → Γ(E ′) be a C∞(M)-linear map. Then for every p ∈M there exists a unique
linear map Fp : Ep → E ′

p such that

Fp(s(p)) = β(s)(p)

for every s ∈ Γ(E).

Proof. Fix p ∈M and v ∈ Ep. By Lemma 3 we can find a section s ∈ Γ(E) with s(p) = v,
so we can define Fp(v) = β(s)(p). Note that Fp is well-defined (independently of the
choice of s) because β is C∞(M)-linear (hence it acts pointwise). It is straightforward
that:

• By definition, Fp satisfies the desired condition.

• Fp is uniquely defined by the desired condition.

• Fp is a linear map: for any v1, v2 ∈ Ep and c ∈ R write s1(p) = v1 and s2(p) = v2
for some sections s1 and s2, then (cs1 + s2)(p) = cv1 + v2 and

Fp(cv1 + v2) = β(cs1 + s2)(p)

= cβ(s1)(p) + β(s2)(p)

= cFp(v1) + Fp(v2)



26

Now we can prove the aforementioned correspondence quite easily, just by piecing
together the linear maps Fp given by Lemma 4.

Theorem 1 (Hom-Gamma correspondence theorem). The map Φ in diagram (8) given
by Φ(F ) = F∗, sending any bundle homomorphism to its induced map on sections, defines
a bijective correspondence

Γ(Hom(E,E ′)) ≃ Hom(Γ(E),Γ(E ′)).

Proof. First we check that Φ is surjective. Take any C∞(M)-linear map β : Γ(E) →
Γ(E ′), and for any p ∈M define Fp : Ep → E ′

p as in Lemma 4. Then define F : E → E ′

by the formula
F (p, v) = Fp(v)

for every p ∈M and v ∈ Ep. By construction this map satisfies

F∗(s)(p) = (F ◦ s)(p) = F (p, s(p)) = Fp(s(p)) = β(s)(p)

hence β = F∗ = Φ(F ) as claimed. To see that Φ is injective, suppose that Φ(F ) = Φ(F ′)
i.e. F∗ = F ′

∗, then for every p ∈ M and v ∈ Ep we find s ∈ Γ(E) with s(p) = v, and
determine that

F (v) = F (s(p)) = (F ◦ s)(p) = F∗(s) = F ′
∗(s) = · · · = F ′(v)

so F = F ′ and Φ is injective.

A 1-form ω ∈ Ω1(M) acts on tangent vectors to produce real numbers,

ω : (p, v) ∈ TpM 7→ ωp(v) ∈ R

so if we remove the specified point p ∈M from both sides, an implicit dependence upon
p ∈M arises, and we get a map

ω̃ : X(M) → C∞(M)

where ω̃(X)(p) = ωp(Xp). Thus the 1-form ω can be thought of as a map X(M) →
C∞(M), and no information is lost from doing so. Note that, from this perspective, for
any f ∈ C∞(M) we have

ω(fX)(p) = ωp(f(p)Xp) = f(p)ωp(Xp) = (fω)(X)(p)

so ω(fX) = fω(X) and ω is C∞(M)-linear. More generally, we say that a k-form
ω ∈ Ωk(M) induces a map ω̃ : X(M)k → C∞(M) given by the formula

ω̃(X1, . . . , Xk)(p) = ωp (X1|p, . . . , Xk|p)

which is C∞(M)-multilinear. Conversely, this C∞(M)-multilinearity property is enough
to establish that a map acting on vector fields comes from a tensor field; for this latter
direction suppose we are given a C∞(M)-multilinear map ω̃ : X(M)k → C∞(M) and
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we want to construct a k-form ω ∈ Ωk(M) inducing it. The natural choice is to define
ωp ∈ Λk(T ∗

pM) by the formula

ωp(v1, . . . , vk) = ω̃(V1, . . . , Vk)(p)

where each Vi is a vector field on M extending vi ∈ TpM . The fact that this is well-
defined independently of the choices of extensions is exactly where the C∞(M)-linearity
assumption on ω̃ comes into play. We summarize all of this with the following fact:

Fact 23. A map Ã : X(M)k → C∞(M) is induced by a smooth covariant k-tensor field
A ∈ Γ(T k(T ∗M)) if and only if it is multilinear over C∞(M).

Proof. One direction is clear: a smooth covariant k-tensor field induces such a C∞(M)-
multilinear map. Conversely, suppose that we are given a C∞(M)-multilinear map Ã :
X(M)k → C∞(M). Since Ã is C∞(M)-multilinear, each of its components Ãi : X(M) →
C∞(M) acts pointwise by Fact 20. Thus we can define a tensor field A :M → T kT ∗M
by

Ap(v1, . . . , vk) = Ã(V1, . . . , Vk)(p)

for any p ∈ M and v1, . . . , vk ∈ TpM , where Vi is a smooth global vector field on M
extending vi. This definition is independent of the choices of extensions because Ã acts
pointwise in each component, and we conclude that Ã is induced by the tensor field
A.

In everything that follows we will simply identify a tensor field A with its associated
C∞(M)-multilinear map Ã and denote them both by A. We will pass freely between
the two ways of thinking about the map.

Fact 24. A map A : X(M)k → C∞(M) is induced by a differential k-form A ∈ Ωk(M)
if and only if it is alternating and multilinear over C∞(M).

Fact 25. A map
A : Ω1(M)h × X(M)k → C∞(M)

is induced by a mixed (h, k)-tensor field if and only if it is multilinear over C∞(M).

7 Bundle-valued differential forms
In this section we extend the notion of differential form to that of vector-valued and
bundle-valued differential forms. Let M be a smooth manifold. Differential k-forms on
M are sections ω ∈ Ωk(M) = Γ(ΛkT ∗M), i.e. smooth maps

ω :M → Λk(T ∗M)

p 7→ ωp ∈ Λk(T ∗
pM)

i.e. the values are (alternating covariant) k-tensors ωp : (TpM)k → R on tangent spaces.
But we could define an analogous map whose values lie in any vector space (instead
of just R), or on the fibers of any vector bundle. This idea leads immediately to the
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concept of bundle-valued differential forms: take any vector bundle E →M , then we
consider in analogous fashion smooth maps

α :M → Λk(T ∗M)⊗ E

p 7→ αp ∈ Λk(T ∗
pM)⊗ Ep

i.e. the values are (alternating covariant) k-tensors αp : (TpM)k → Ep. In other words,
α is a section

α ∈ Γ(Λk(T ∗M)⊗R E) ≃ Ωk(M)⊗C∞(M) Γ(E).

These sections are called E-valued differential k-forms on M , or E-valued forms in
brief. We denote the space of such sections by the notation

Ωk(M ;E) = Γ(ΛkT ∗M ⊗ E) ≃ Ωk(M)⊗ Γ(E).

Remark. Notice the subscripts in the tensor products above. We emphasize that the
first tensor product is taken between R-modules, whereas the second tensor product is
taken between C∞(M)-modules, and the equivalence is between C∞(M)-modules (see
Fact 10). In general we will omit these subscripts, hopefully the meaning will be clear
from the context.

In the same way that (real-valued) differential forms act on vector fields to produce
functions, bundle-valued differential forms act on vector fields to produce sections.
Namely, α induces a smooth alternating map

α : X(M)k → Γ(E)

α(X1, . . . , Xk)(p) = αp(X1|p, . . . , Xk|p) ∈ Ep

which is clearly C∞(M)-linear in each of its components, for any f ∈ C∞(M) we have
α(fX1, . . . , Xk)(p) = αp(f(p)X1|p, . . . , Xk|p)

= f(p)αp(X1|p, . . . , Xk|p)

i.e. α(fX1, . . . , Xk) = fα(X1, . . . , Xk), and the same argument holds for every other
component. The following Fact shows that these two ways of looking at α are completely
equivalent, so there’s no harm in denoting them by the same symbol.

Fact 26. Let E →M be any vector bundle and suppose we have an alternating R-linear
map

Ã : X(M)k → Γ(E)

then Ã is induced by a section A ∈ Ωk(M ;E) if and only if Ã is C∞(M)-multilinear.

Proof. Suppose we have an alternating C∞(M)-multilinear map Ã : X(M)k → Γ(E).
Then by Fact 20 each of its components Ãi : X(M) → Γ(E) is a point operator, so for
every p ∈M we can define an alternating multilinear map

Ap : (TpM)k → Ep

Ap(v1, . . . , vk) = Ã(V1, . . . , Vk)(p)
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where each Vi is a vector field extending vi ∈ TpM . This definition is independent of
the choices of extension because Ã acts pointwise in each component. Thus

Ap ∈ Alt((TpM)k, Ep) ≃ Λk(T ∗
pM)⊗ Ep

so Ã is induced by the section

A :M → Λk(T ∗M)⊗ E

p 7→ Ap ∈ Λk(T ∗
pM)⊗ Ep

Note that we have used the linear isomorphisms from Facts 7, 2, 3 to get the isomorphism

Alt((TpM)k, Ep) ≃ Hom(ΛkTpM,Ep) ≃ (ΛkTpM)∗ ⊗ Ep ≃ Λk(T ∗
pM)⊗ Ep.

Conversely, suppose that we have a section A ∈ Γ(Λk(T ∗M)⊗ E). Then A induces a
smooth, alternating map

Ã : X(M)k → Γ(E)

Ã(X1, . . . , Xk)(p) = Ap(X1|p, . . . , Xk|p) ∈ Ep

and it’s easy to see that A is C∞(M)-multilinear.

Let’s see how this works in local coordinates. Given α ∈ Ωk(M ;E), take local frames
(dxI) for Λk(T ∗M) and (ej) for E over U ⊆M . Then over U we can write

α =
∑
I,j

αj
Idx

I ⊗ ej

for some smooth coefficient functions αj
I ∈ C∞(U). Equivalently, we can write

α =
∑
j

ωj ⊗ ej

for some k-forms ωj ∈ Ωk(U). This is convenient, for example, when we do not wish
to specify a local frame for Λk(T ∗M). The E-valued k-forms looking like ω ⊗ s where
ω ∈ Ωk(M) and s ∈ Γ(E) are called decomposable. Thus, the local coordinate
expressions above tell us that Ωk(M ;E) is locally generated by decomposable k-forms.
In local coordinates, the action on vector fields looks like

α(X1, . . . , Xk) =
∑
I,j

αj
Idx

I(X1, . . . , Xk)ej ∈ Γ(E).

In the proof of Fact 26 we stuck to the level of fibers because it felt most natural to
me personally, but the space Ωk(M ;E) can be identified with the space of alternating
C∞(M)-multilinear maps X(M)k → Γ(E) through a sequence of global isomorphisms.
Namely, we have

Ωk(M ;E) = Γ(Λk(T ∗M)⊗ E) by definition
≃ Γ(Hom(ΛkTM,E)) by Fact 15
≃ Hom(Γ(ΛkTM),Γ(E)) by Theorem 1

and this latter space is exactly the space of alternating C∞(M)-multilinear maps
X(M)k → Γ(E).
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Example 14 (Bundle-valued forms).

(a) If E = M × R is the rank-1 trivial bundle, then Γ(E) = C∞(M) and therefore
Ω•(M ;E) ≃ Ω•(M) ⊗ C∞(M) = Ω•(M). So, unsurprisingly, we recover the old
notion of a differential form.

(b) Slightly more generally, if V is any finite-dimensional real vector space and E =
M × V is the trivial bundle with fibers given by Ep ≃ V , then Γ(E) = C∞(M ;V )
i.e. smooth maps on M with values in V . Thus, α ∈ Ωk(M ;V ) is a vector-valued
differential form

α : M → Λk(T ∗M)⊗ (M × V )

p 7→ αp ∈ Λk(T ∗
pM)⊗ V

i.e. αp : (TpM)k → V (multilinear, alternating) for every p ∈M

(c) Let g be any finite-dimensional Lie algebra. In particular g is a finite-dimensional
vector space, so we can apply (b) and consider the vector bundle E =M × g with
fibers given by Ep ≃ g. Then α ∈ Ωk(M ; g) is a Lie algebra-valued differential
form

α : M → Λk(T ∗M)⊗ (M × g)

p 7→ αp ∈ Λk(T ∗
pM)⊗ g

i.e. αp : (TpM)k → g (multilinear, alternating) for every p ∈ M . Here is one
special thing that happens when working with Lie algebra-valued differential forms:
since g is equipped with a bilinear form (the Lie bracket [·, ·]), we can define a
wedge product between Lie algebra-valued forms, given by

∧ : Ωk(M ; g)× Ωℓ(M ; g) → Ωk+ℓ(M ; g)

(α⊗X) ∧ (β ⊗ Y ) = (α ∧ β)⊗ [X, Y ]

for every α, β ∈ Ω•(M) and X, Y ∈ C∞(M ; g). This is special because in general
there is no natural wedge product on bundle-valued forms (see the discussion
below).

(d) Let E →M be a vector bundle and EndE →M the associated bundle of endo-
morphisms. Then an endomorphism-valued form is a section A ∈ Ωk(M ; EndE),

A : M → Λk(T ∗M)⊗ EndE

p 7→ Ap ∈ Λk(T ∗
pM)⊗ EndEp

i.e. Ap : (TpM)k → EndEp (multilinear, alternating) for every p ∈M .

(e) The most important objects we study in these notes are covariant derivatives
(aka connections) which are linear operators acting on bundle-valued forms, ∇ :
Ωk(M ;E) → Ωk+1(M ;E). We will see in the next few sections that the curvature
of a connection can be considered as an endomorphism-valued 2-form ∇2 ∈
Ω2(M ; EndE) in the sense that its action on any E-valued form is given by wedge
product with an endomorphism-valued 2-form.
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Now that we have the notion of a bundle-valued differential form, we would like to
extend the usual constructions to this setting. Most importantly the wedge product and
the the exterior derivative.

In general there is no natural way to perform a wedge product of two bundle-valued
differential forms, because there’s no natural product on an arbitrary vector space (or
on the fibers of a vector bundle). We can perform the usual exterior product on the
“differential form part” of a bundle-valued form, which gives us one-sided wedge products
(defined first on decomposable elements)

∧ : Ωk(M ;E)× Ωℓ(M) → Ωk+ℓ(M ;E)

(ω ⊗ s) ∧ θ = (ω ∧ θ)⊗ s

∧ : Ωk(M)× Ωℓ(M ;E) → Ωk+ℓ(M ;E)

θ ∧ (ω ⊗ s) = (θ ∧ ω)⊗ s

for any ω, θ ∈ Ω•(M) and s ∈ Γ(E), and then extended linearly. In fact, we do have
a natural wedge product operation for End(E)-valued differential forms, because here
composition provides a natural product on endomorphisms:

∧ : Ωk(M ; EndE)× Ωℓ(M ; EndE) → Ωk+ℓ(M ; EndE)

(ω ⊗ ϕ) ∧ (θ ⊗ ψ) = (ω ∧ β)⊗ (ϕ ◦ ψ)

for every ω, θ ∈ Ω•(M) and ϕ, ψ ∈ Γ(EndE). In words, this wedge product acts by the
usual exterior product in the k-form component, and by composition in the sectional
component. We are remembering here that elements of Γ(EndE) – sections of the
endomorphism bundle – are in fact bundle endomorphisms E → E (by Fact 13).

Remark. The commutator gives a natural bracket on each fiber of EndE →M , so we
could define a wedge product on endomorphism-valued forms by

(ω ⊗ ϕ) ∧ (θ ⊗ ψ) = (ω ∧ θ)⊗ [ϕ, ψ]

which is of course different from the wedge product given by (ω ∧ θ) ∧ ϕ ◦ ψ. In these
notes we will not use the wedge product given by the commutator bracket on EndE and
we will always mean composition in the EndE component. In general, when reading
any literature that uses endomorphism-valued forms, one should just be careful about
how the wedge product is defined.

Considering endomorphism-valued differential forms also allows us to define another
one-sided wedge product for Ω•(M ;E), this time on the left-side. We define

∧ : Ωk(M ; EndE)× Ωℓ(M ;E) → Ωk+ℓ(M ;E)

(ω ⊗ ϕ) ∧ (θ ⊗ s) = (ω ∧ θ)⊗ ϕ(s)

for every ω, θ ∈ Ω•(M), ϕ ∈ Γ(EndE) and s ∈ Γ(E).

Fact 27. The right-sided and left-sided wedge products

∧ : Ωk(M)× Ωℓ(M ;E) → Ωk+ℓ(M ;E)

∧ : Ωk(M ; EndE)× Ωℓ(M ;E) → Ωk+ℓ(M ;E)
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are compatible in the sense that

(A ∧ ω) ∧ α = A ∧ (ω ∧ α)

for every A ∈ Ω•(M ; EndE), ω ∈ Ω•(M), and α ∈ Ω•(M ;E).

Proof. This follows directly by applying the definitions to decomposable forms. To wit,

((ω1 ⊗ φ) ∧ (ω2 ⊗ s)) ∧ ω3 = ((ω1 ∧ ω2)⊗ φ(s)) ∧ ω3

= (ω1 ∧ ω2 ∧ ω3)⊗ φ(s)

and similarly on the other side,

(ω1 ⊗ φ) ∧ ((ω2 ⊗ s) ∧ ω3) = (ω1 ⊗ φ) ∧ ((ω2 ∧ ω3)⊗ s)

= (ω1 ∧ ω2 ∧ ω3)⊗ φ(s).

We also note that the left and right wedge products of Ω•(M) with Ω•(M ;E) are
anticommutative in the sense that

ω ∧ α = (−1)kℓα ∧ ω (9)

for every ω ∈ Ωk(M) and α ∈ Ωℓ(M ;E). To summarize, we have natural wedge products
for bundle-valued forms such that:

(i) Ω•(M ; EndE) is an algebra over C∞(M).

(ii) Ω•(M ;E) is a left Ω•(M ; EndE)-module.

(iii) Ω•(M ;E) is a left and right Ω•(M)-module.

An antiderivation of E-valued forms is a local operator D : Ω•(M ;E) → Ω•(M ;E)
satisfying the following two conditions:

(i) There exists a number k ∈ N called the degree of D such that D restricts to a
local operator D : Ωℓ(M ;E) → Ωℓ+k(M ;E) for every ℓ ∈ N.

(ii) D satisfies the product rule with respect to the wedge product, i.e.

D(ω ∧ α) = dω ∧ α + (−1)kℓω ∧Dα
D(α ∧ ω) = Dα ∧ ω + (−1)kℓα ∧ dω

for every ω ∈ Ωℓ(M) and α ∈ Ω•(M ;E).

Note that an antiderivation is by assumption a linear map between vector spaces, because
this is built into the definition of a “local operator”. The “anti” part refers to the (−1)k

factor, arising from the antisymmetry of the wedge product.

Example 15 (Antiderivations).
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(a) The Lie derivative of differential forms is an antiderivation of degree 0 because for
any vector field X ∈ X(M) it satisfies

LX : Ωℓ(M) → Ωℓ(M)

LX(ω ∧ θ) = LX(ω) ∧ θ + ω ∧ LXθ

for every ℓ ∈ N, and ω, θ ∈ Ω•(M).

(b) The exterior derivative of differential forms is an antiderivation of degree +1
because it satisfies

d : Ωℓ(M) → Ωℓ+1(M)

d(ω ∧ θ) = dω ∧ θ + (−1)degωω ∧ dθ

for every ℓ ∈ N and ω, θ ∈ Ω•(M).

(c) The interior multiplication is an antiderivation of degree -1. For any vector field
X ∈ X(M), interior multiplication with X is given by

iX : Ωℓ(M) → Ωℓ−1(M)

iX(ω)(V1, . . . , Vℓ−1) = ω(X, V1, . . . , Vℓ−1)

and it satisfies the product rule

iX(ω ∧ θ) = (iXω) ∧ θ + (−1)degωω ∧ (iXθ)

for every ω, θ ∈ Ω•(M).

An antiderivation of Ω•(M ;E) is completely determined by its action on the degree
zero bundle-valued forms (i.e. sections of E).

Fact 28. Suppose D1, D2 : Ω
•(M ;E) → Ω•(M ;E) are two antiderivations of the same

degree. If D1 and D2 agree on Γ(E), then D1 = D2.

Proof. Say the common degree of D1 and D2 is k ∈ N. Let (ei) be a local frame for
E over some subset U ⊆M , and let α ∈ Ωℓ(U ;E) be any bundle-valued form defined
locally on U . Thus we can express α in terms of the local frame as

α =
∑
i

ωi ⊗ ei

for some ℓ-forms ωi ∈ Ωℓ(U). Let DU
1 denote the operator D1 restricted to Γ(E|U ) as in

Fact 21, and similarly with DU
2 . Using the product rule together with the fact that D1

and D2 coincide on sections of E, we have

DU
1 (α) =

∑
i

D1(ω
i ⊗ ei)

=
∑
i

dωi ⊗ ei + (−1)kℓωi ⊗D1(ei)

=
∑
i

dωi ⊗ ei + (−1)kℓωi ⊗D2(ei)

= DU
2 (α)
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thus DU
1 = DU

2 . Note that in the first line we have applied D1 to the local sections
ωi ⊗ ei since we can extend them to global sections arbitrarily and D1 doesn’t care
how we do it because it’s a local operator. Moreover, since D1 is a local operator it
is completely determined by the restrictions DU

1 to open subsets of M , i.e. D1 is the
unique operator obtained by gluing together the various operators DU

1 (by Fact 22). We
conclude that D1 = D2.

Corollary 3. Any local operator Γ(E) → Ω1(M ;E) extends uniquely to a degree +1
antiderivation of Ω•(M ;E).

The only antiderivation we really care about in this note is the one which is uniquely
determined by a connection/covariant derivative on a vector bundle. So we don’t yet
have any purpose for these facts about antiderivations, but they will be necessary
background material for the next section. Antiderivations fit more thematically with
bundle-valued forms anyway, so I decided to include them here.

We also don’t have any use for the wedge products just yet, but they will play an
important role in calculations involving the curvature.

8 Connections
Given a vector bundle E →M and a local frame (ei) for E over U ⊆M , we can define
an exterior derivative acting on sections of E which directly generalizes the usual exterior
derivative acting on forms. Namely, given any section s ∈ Γ(E), write s =

∑
i s

iei with
respect to this frame and define

d : Γ(E|U) → Γ(E|U)⊗ Γ (T ∗M |U)

ds =
∑
i,j

∂si

∂xj
ei ⊗ dxj

(10)

We emphasize that this operator is only defined relative to the specified local frame.
The expression (10) should take a vector field X ∈ Γ(TM |U ) and yield a local section of
E via the formula

ds(X) = dXs =
∑
i,j

Xj ∂s
i

∂xj
ei =

∑
i

X(si)ei ∈ Γ(E|U). (11)

Notice that d is R-linear in both X and s, and for any f ∈ C∞(U) we have

dfX(s) =
∑
i,j

fX i∂s
j

∂xi
ej = fdXs

dX(fs) =
∑
i,j

X i ∂

∂xi
(fsj)ej

=
∑
i,j

X i ∂f

∂xi
sjej + fX i∂s

j

∂xi
ej

= X(f)s+ fdXs



35

so d is C∞-linear in X and satisfies a product rule in s. Therefore, we have

dXs =
∑
i,j

X id∂i(s
jej)

=
∑
i,j

X i∂s
j

∂xi
ej + sjd∂iej

and comparing this with equation (11) we find that

d∂iej = 0

for every i, j, which is to say that dej = 0 for every j. Thus the sections (ei) are
“constant” with respect to this derivative operator. In fact, the requirement that d be
C∞-linear in X, that it satisfy the product rule in s, and that dej = 0 for every j, are
all enough to completely characterize d.

The operator d is an example of a connection on the vector bundle E. The general
notion of a connection is obtained by taking the linearity properties of d and allowing
the sections d∂i(ej) to be nonzero, i.e. to depend upon any arbitrary collection of smooth
coefficient functions. Before properly defining the notion of connection, let’s take a more
global look at the structure of a linear operator of the form β : Γ(E) → Γ(E)⊗Γ(T ∗M).
Writing

Γ(E)⊗ Γ(T ∗M) = Γ(E)⊗ Ω1(M) ≃ Ω1(M ;E)

we see that β sends any section s ∈ Γ(E) to an E-valued form β(s) ∈ Γ(E)⊗ Ω1(M).
Thus Fact 26 tells us that β(s) is a C∞(M)-linear map acting on vector fields,

β(s) : X(M) → Γ(E).

As a result, we can equivalently consider β as a map

β : Γ(E)× X(M) → Γ(E)

β(s,X) = β(s)X = βXs

which is R-linear in the s argument and C∞(M)-linear in the X argument. This
discussion motivates the following definition: a connection on a vector bundle E →M
is a map

∇ : Γ(E) → Γ(E)⊗ Γ(T ∗M)

written as ∇(s,X) = ∇Xs, such that

(i) ∇ is C∞(M)-linear in the X argument.

(ii) ∇ is R-linear in the s argument.

(iii) ∇ satisfies the product rule in the s argument:

∇X(fs) = (Xf)s+ f∇Xs

for every f ∈ C∞(M).
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∇Xs is also called the covariant derivative of s along X. By the preceding discussion
we can also equivalently regard ∇ as a map

∇ : Γ(E)× X(M) → Γ(E).

satisfying properties (i)-(iii).

Fact 29. Let E →M be a vector bundle. A connection ∇ on E is (equivalent to) an
R-linear local operator

∇ : Ω0(M ;E) → Ω1(M ;E)

satisfying the product rule
∇(fs) = df ⊗ s+ f∇s

for every f ∈ C∞(M) and s ∈ Γ(E).

Proof. The only thing that remains to be shown is that a connection is a local operator.
Suppose s ∈ Γ(E) such that s|U = 0 on some open subset U ⊆ M . We want to show
that (∇s)|U = 0. Take any p ∈ U , and choose an open subset p ∈ V ⊆ U and a smooth
bump function χ :M → R with

χ|V = 1 and suppχ ⊆ U

then dχp = 0, and χs = 0 identically on M , hence

0 = ∇(χs)(p)

= dχp ⊗ s(p) + χ(p)(∇s)(p)
= (∇s)(p)

and since this holds for every p ∈ U we conclude that (∇s)|U = 0, thus ∇ is a local
operator.

Let’s see what a connection ∇ looks like in local coordinates. Take a local frame (∂i)
for TM and (ej) for E over U ⊆M and write

X =
n∑

i=1

X i∂i and s =
r∑

j=1

sjej

where n = dimM and r = rankE. Then we write

∇∂iej =
r∑

k=1

Γk
ijek

for some collection of smooth functions Γk
ij ∈ C∞(U). We suggested in our motivating

discussion above that allowing these functions to be nonzero is what distinguishes
the connection ∇ from the naive derivative operator d, and being able to select these
functions arbitrarily gives us the most general way to differentiate sections of a vector
bundle. Locally, these functions uniquely define the connection ∇ on E. With respect
to these local coordinates, the connection ∇ looks like
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∇Xs =
n∑

i=1

X i∇∂i

(
r∑

j=1

sjej

)

=
n∑

i=1

r∑
j=1

X i∇∂i(s
jej)

=
n∑

i=1

r∑
j=1

X i

(
sj∇∂iej +

∂sj

∂xi
ej

)

=
n∑

i=1

r∑
j=1

r∑
k=1

(
X isjΓk

ijek
)
+

n∑
i=1

r∑
j=1

X i∂s
j

∂xi
ej

=
n∑

i=1

r∑
j=1

r∑
k=1

(
X isjΓk

ijek
)
+

r∑
j=1

X(sj)ej

Renaming the index of the last summation from j to k and combining the sums into
one, we obtain

∇Xs =
∑
i,j,k

(
X(sk) +X isjΓk

ij

)
ek. (12)

Example 16 (Flat connection on a trivial vector bundle). The simplest connection is
the exterior derivative acting on smooth functions. Let M be a smooth manifold and
let E = M × R → M the rank-1 trivial bundle over M . The exterior derivative is an
operator from Γ(E) = C∞(M ;R) to Ω1(M ;E) = Ω1(M), given by

d : C∞(M ;R) → Ω1(M)

df(X) = dX(f) = Xf

This is called the flat connection because it has zero curvature (which in this case just
means that d2 = 0). Similarly, when E = M × Rk is the rank-k trivial bundle over
M , we have a trivial connection defined by applying the exterior derivative to each
component:

∇X : C∞(M ;Rk) → C∞(M ;Rk)

∇X(f1, . . . , fk) = (Xf1, . . . , Xfk)

Example 17 (Flat connection on a nontrivial vector bundle). Let E → M be any
vector bundle and suppose we fix local frames (ei) for E and (dxj) for T ∗M over U ⊆M .
At the beginning of this section in equation (10) we defined an operator

d : Γ(E|U) → Γ(E|U)⊗ Γ (T ∗M |U)

ds =
∑
i,j

∂si

∂xj
ei ⊗ dxj

This is the flat connection on E|U → U , generalizing the previous example because it’s
essentially just the exterior derivative acting on the bundle E|U = U × Rk which is
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trivial over U . However, this operator is only well-defined locally and does not define a
global connection on E →M .

A vector bundle is called flat if it admits a globally defined flat connection. Every
vector bundle is locally flat because d is always locally a connection with d2 = 0.

We will show that every connection ∇ on E →M locally looks like the flat connection
d plus some matrix of 1-forms A.

Example 18 (Euclidean connection). Define the Euclidean connection on TRn as
the map

∇ : Γ(TRn)× Γ(TRn) → Γ(TRn)

∇XY = X(Y 1)∂1 + · · ·+X(Y n)∂n

whose value at each point p ∈ Rn is the vector(
∇XY

)
(p) = ∇XpY

= Xp(Y
1)∂1

∣∣
p
+ · · ·+Xp(Y

n)∂n
∣∣
p

Notice that this is just the usual directional derivative operator from vector calculus.

Example 19 (Tangential connection on a Euclidean submanifold). Let M ⊆ Rn be an
embedded submanifold and let πT : TRn → TM denote the orthogonal projection onto
TM . The tangential connection on TM is the operator ∇T given by

∇T
X(Y ) = πT

(
∇X̃ Ỹ

)
for every pair of smooth vector fields X, Y ∈ X(M), extended to smooth vector fields X̃
and Ỹ in an open subset of Rn. We note that:

• For any p ∈M , we have by definition(
∇T

XY
)
(p) = πT

∣∣
p

(
∇XpỸ

)
which is precisely the tangential component of the directional derivative of Ỹ in
the direction of Xp.

• ∇T
X(Y ) is a smooth vector field onM because πT is a smooth bundle homomorphism

and ∇X̃ Ỹ is a smooth vector field on Rn.

Fact 30 (Existence of connections). Let M be a smooth manifold of dimension n
and let E → M be any vector bundle of rank r. Then E admits infinitely many
connections, each one locally determined by a choice of smooth connection coefficients
{Γk

ij : 1 ≤ i ≤ n, 1 ≤ j, k ≤ r}.

Proof. Cover M with coordinate charts {Uα} which locally trivialize E. Then we can
define a connection ∇α on each Uα just by selecting smooth connection coefficients
Γk
ij : Uα → R – then ∇α is completely determined by the formula (12) above. Choosing

a partition of unity {ψα} subordinate to {Uα} and patching together all the various
local guys gives us a connection

∇Xs =
∑
α

ψα∇α
Xs.

Let’s check that this does indeed define a connection on E.
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• ∇ is R-linear in s and C∞(M)-linear in X immediately from the corresponding
properties for the ∇α.

• As for the product rule, take any f ∈ C∞(M) and calculate

∇X(fs) =
∑
α

ψα∇α
X(fs)

=
∑
α

ψα (f∇α
Xs+X(f)s)

=
∑
α

ψαf∇α
Xs+

∑
α

ψαX(f)s

= f
∑
α

ψα∇α
Xs+X(f)Y

∑
α

ψα

= f∇Xs+X(f)s

where the last line follows from the fact that
∑

α ψα = 1.

Remark. Since any choice of smooth connection coefficients locally determine a connec-
tion on E, the preceding fact shows that connections are quite plentiful. On the other
hand, there’s not really any canonical choice of connection on E. However, we will show
that for a vector bundle equipped with a Riemannian metric there is a canonical choice
of connection (the Levi-Civita connection) modelled on the Euclidean connection ∇.
More generally, a “natural” connection on a vector bundle can also arise by trying to
construct one with “minimal curvature” (for some suitable quantitative measurement of
curvature). This leads to the notion of Yang-Mills connection.

Let’s return to equation (12), the local coordinate expression for a connection ∇
on a vector bundle E →M . Notice that the first term in this expression is simply the
exterior derivative associated with the local frame (ek) over U ⊆M . Similarly, we want
to interpret the second term as a map Γ(E|U) → Γ(E|U)⊗ Γ (T ∗M |U).

∇Xs =
∑
k

X(sk)ek︸ ︷︷ ︸
dXs

+
∑
i,j,k

X isjΓk
ijek︸ ︷︷ ︸

?

This leads precisely to the connection 1-forms associated with ∇. Namely, for every
each j.k ∈ {1, . . . , r} we define a 1-form on U by

Ak
j =

n∑
i=1

Γk
ijdx

i ∈ Ω1(U)

and the collection {Ak
j}rj,k=1 are called the connection 1-forms associated with ∇.

They are defined locally over U , with respect to the chosen local frame (dxi) for T ∗M .
It is computationally convenient to consider the 1-forms Ak

j as the entries of an r × r
matrix,

A =
(
Ak

j

)
jk
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and with this notation we can consider A as an operator acting on sections via matrix
multiplication:

A : Γ(E|U) → Γ(E|U)⊗ Γ(T ∗M |U)

As =
r∑

j,k=1

Ak
j s

j ⊗ ek =
r∑

j,k=1

(
n∑

i=1

Γk
ijs

j

)
dxi ⊗ ek

for any s =
∑

ℓ s
ℓeℓ ∈ Γ(E|U). Evidently, As acts on a vector field X ∈ X(U) by the

formula

As(X) = AXs =
r∑

j,k=1

n∑
i=1

Γk
ijs

jX iek

which is precisely the second term in equation (12). As a result, the local coordinate
expression tells us that the connection can be locally decomposed as

∇ = d+ A

where d is the flat connection i.e. the exterior derivative with respect to a local frame
(ek) for E over U ⊆M , and A represents the matrix of connection 1-forms with respect
to a local frame (dxi) for T ∗M over U .

Next we will derive a few useful formulas related to the matrix A. First of all,
note that we can equivalently consider A itself as a 1-form with matrix coefficients in
M(r, C∞(U)), i.e. A ∈ M(r, C∞(U))⊗ Ω1(U). Thus A is called the the connection
1-form associated with the connection ∇. To see this very explicitly, suppose for
simplicity that n = r = 2 and write

A =

[
A1

1 A1
2

A2
1 A2

2

]
=

[
Γ1
11dx

1 + Γ1
21dx

2 Γ1
12dx

1 + Γ1
22dx

2

Γ2
11dx

1 + Γ2
21dx

2 Γ2
12dx

1 + Γ2
22dx

2

]
=

[
Γ1
11 Γ1

12

Γ2
11 Γ2

12

]
dx1 +

[
Γ1
21 Γ1

22

Γ2
21 Γ2

22

]
dx2.

Thus we will write

A =
n∑

i=1

aidx
i

where each ai ∈M(r, C∞(U)) is the matrix given by

(ai)uv = Γu
iv

One useful thing about this expression is that it becomes clear how to perform operations
like dA (take entry-wise derivatives of each ai) and A ∧ A (perform the wedge product
of 1-forms as usual). Explicitly, we have

dA =
n∑

i,j=1

∂aj
∂xi

dxi ∧ dxj

=
1

2

∑
i<j

(
∂aj
∂xi

− ∂ai
∂xj

)
dxi ∧ dxj

(13)
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and

A ∧ A =
n∑

i,j=1

aiajdx
i ∧ dxj

=
1

2

∑
i<j

(aiaj − ajai)dx
i ∧ dxj

=
1

2

∑
i<j

[ai, aj]dx
i ∧ dxj.

(14)

Before moving on from this topic and using the decomposition to study the connection,
we should make note of one more equivalent way of thinking about the connection
matrix A ... In this way, we can view the connection matrix as an endomorphism-valued
1-form, i.e. A ∈ Ω1(M ; EndE).

The local decomposition ∇ = d + A is useful for understanding the structure of
various induced connections on associated bundles.

Example 20 (Induced connection on direct sum). Let E → M be a vector bundle
with connection ∇E and F →M another vector bundle with connection ∇F . Define a
connection ∇ on E ⊕ F →M by the formula

∇X(r, s) = (∇E
Xr,∇F

Xs)

for every r ∈ Γ(E) and s ∈ Γ(F ).

Example 21 (Induced connection on dual bundle). Let E → M be a vector bundle
with connection ∇. We want to define a connection on the dual bundle E∗ →M which
is dual to or induced by ∇ in some sense. Note that the bilinear pairing between E and
E∗ extends to a pairing between sections,

(•, •) : Γ(E)× Γ(E∗) → C∞(M)

(s, η)(p) = ηp(sp) ∈ R

and this can in turn be extended to pairings between bundle-valued forms,

(•, •) : Ωk(M ;E)× Γ(E∗) → Ωk(M)

(s⊗ ω, η) = η(s)ω

(•, •) : Γ(E)× Ωk(M ;E∗) → Ωk(M)

(s, η ⊗ ω) = η(s)ω

i.e. just by pairing the section component of the bundle-valued form with the dual.
The dual connection on E∗ is the operator ∇∗ : Γ(E∗) → Ω1(M ;E∗) defined by the
relation

d(s, η) = (∇s, η) + (s,∇∗η)

for every s ∈ Γ(E) and η ∈ Γ(E∗). Applying both sides of this equation to any vector
fieldX ∈ X(M), we see that this is equivalent to saying that ∇∗ : Γ(E∗)×X(M) → Γ(E∗)
is given by

(∇∗
Xη)s = X(η(s))− η(∇Xs).
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Let (ej) be a local frame for E, and let (e∗j) denote the dual frame for E∗ so that
(ei, e

∗
j) = δij). With respect to these coordinates we decompose the connections as

∇ = d+ A and ∇∗ = d∗ + A∗.We want to determine the local coordinate expression for
A∗ and figure out its relation with A. We calculate

0 = d(ei, e
∗
j)

= (∇ei, e∗j) + (ei,∇∗e∗j)

= (dei, e
∗
j) + (Aei, e

∗
j) + (ei, d

∗e∗j) + (ei, A
∗e∗j)

= (Aei, e
∗
j) + (ei, A

∗e∗j)

because dei = 0 and d∗e∗j = 0 for every i, j. Moreover,

(Aei, e
∗
j) =

(∑
k

Ak
i ek, e

∗
j

)
=
∑
k

e∗j(ek)A
k
i = Aj

i

and similarly

(ei, A
∗e∗j) =

(
ei,
∑
k

(A∗)kj e
∗
k

)
=
∑
k

e∗k(ei)(A
∗)kj = (A∗)ij.

Thus 0 = Aj
i + (A∗)ij, which is to say that

A∗ = −AT

i.e. the matrix A∗ is the negative transpose A. Relating this to the connection coefficients,
we have

∇∗
∂i
e∗j =

∑
k

(
−Γj

ik

)
e∗k

where Γk
ij are the connection coefficients of ∇.

Example 22 (Induced connection on tensor product). Let E →M be a vector bundle
with connection ∇E and F →M another vector bundle with connection ∇F . Define a
connection ∇⊗ on E ⊗ F →M by the formula

∇⊗(r ⊗ s) = (∇Er)⊗ s+ r ⊗ (∇F s)

for every decomposable section r ⊗ s ∈ Γ(E ⊗ F ), and then extending linearly.

Example 23 (Induced connection on Hom bundle). Let E → M be a vector bundle
with connection ∇E and F →M another vector bundle with connection ∇F . Define a
connection ∇̃ on the homomorphism bundle Hom(E,F ) →M by the formula

∇̃ : Γ(Hom(E,F ))× X(M) → Γ(Hom(E,F ))

(∇̃Xϕ)(r) = ∇F
X(ϕ(r))− ϕ(∇E

Xr)

where ϕ : Γ(E) → Γ(F ) and r ∈ Γ(E). We want to show that, under the bundle
isomorphism Hom(E,F ) ≃ E∗ ⊗ F , the connection ∇̃ is exactly the induced connection
on E∗ ⊗ F . First of all, note that under the aforementioned bundle isomorphism any
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section ϕ ∈ Γ(Hom(E,F )) is uniquely identified with a section η ⊗ s ∈ Γ(E∗)⊗ Γ(F )
such that

ϕ(r) = η(r)s ∈ Γ(F )

for every r ∈ Γ(E). Thus we have

(∇̃Xϕ)(r) = ∇F
X(ϕ(r))− ϕ(∇E

Xr)

= ∇F
X(η(r)s)− η(∇E

Xr)s

=
(
X(η(r))s+ η(r)∇F

Xs
)
− η(∇E

Xr)s

On the other hand let ∇⊗ denote the induced connection on E∗ ⊗ F , by definition

∇⊗
X(η ⊗ s) = (∇∗

Xη)⊗ s+ η ⊗
(
∇F

Xs
)

which acts on r ∈ Γ(E) by

∇⊗
X(η ⊗ s)(r) = [(∇∗

Xη)r]s+ η(r)∇F
Xs

= [X(η(r))− η
(
∇E

Xr
)
]s+ η(r)∇F

Xs.

Comparing these equations for ∇̃ and ∇⊗, we see that they are exactly the same after
the identification ϕ = η ⊗ s.

Example 24 (Pullback connections). Let E → N be a vector bundle with connection
∇ and φ :M → N a diffeomorphism. Let φ∗E →M denote the pullback of E along φ.
We can define a natural connection ∇φ on φ∗E →M by the formula

∇φ : Γ(φ∗E)× X(M) → Γ(φ∗E)

∇φ
X(s ◦ φ) = (∇φ∗Xs) ◦ φ

for any s ∈ Γ(E). Here we are using the fact that the space of sections of φ∗(E)
(equivalently, sections of E along φ) is locally generated by sections of the form s ◦φ for
s ∈ Γ(E) (see Fact 11). Thus it makes good sense to define ∇φ by this formula locally,
and then extend it linearly. Let’s check that this does indeed define a connection:

∇φ is C∞(M)-linear in the vector field argument. Given f ∈ C∞(M), write f = f̃ ◦φ
so that

∇φ
fX(s ◦ φ) = (∇φ∗(fX)s) ◦ φ

= (∇f̃φ∗Xs) ◦ φ
= (f̃∇φ∗Xs) ◦ φ
= f(∇φ∗Xs) ◦ φ

as expected. Moreover, ∇φ satisfies the product rule in the section argument. Given
f = f̃ ◦ φ ∈ C∞(M) we have

∇φ
X(f(s ◦ φ)) = ∇φ

X((f̃ s) ◦ φ)
= (∇φ∗X(f̃ s)) ◦ φ
= ((φ∗X)(f̃)s+ f̃∇φ∗Xs) ◦ φ
= (Xf)(s ◦ φ) + f∇φ

X(s ◦ φ)

which completes the proof.
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As in Example 23, given a vector bundle E → M with connection ∇, we get an
induced connection on the endomorphism bundle EndE →M ,

∇̃ : Ω0(M ; EndE) → Ω1(M ; EndE)

which is defined by the formula

∇̃Xϕ : Γ(E) → Γ(E)

(∇̃Xϕ)(s) = ∇X(ϕ(s))− ϕ(∇Xs)

for every ϕ ∈ Γ(EndE) and s ∈ Γ(E). We have a convenient local expression for ∇̃
which exhibits the relation between ∇ and ∇̃ more clearly:

Fact 31. Let E →M be a vector bundle with connection ∇, with local decomposition
∇ = d+A. Let ∇̃ denote the induced connection on the endomorphism bundle EndE →
M . For any ϕ ∈ Γ(EndE), we have

∇̃ϕ = dϕ+ [A, ϕ] = dϕ+ Aϕ− ϕA

where the Lie bracket is given at the level of fibers by commutator of matrix multiplication.

Proof. Write ∇ = d+A with respect to a local frame (ei) for E, and let (ei) denote the
dual frame for E∗. Under the isomorphism EndE ≃ E ⊗ E∗, write ϕ =

∑
i,j ϕ

i
jei ⊗ ej.

By definition we have

∇ej =
∑
k

Ak
j ⊗ ek and ∇∗ej = −

∑
k

Aj
k ⊗ ek

because dej = 0 and dej = 0 for every j. We calculate

∇̃ϕ =
∑
i,j

∇̃
(
ϕi
jei ⊗ ej

)
=
∑
i,j

∇(ϕi
jei)⊗ ej + ϕi

jei ⊗∇∗(ej)

=
∑
i,j

(
d(ϕi

j)⊗ ei ⊗ ej + ϕi
j∇(ei)⊗ ej + ϕi

jei ⊗∇∗(ej)
)

=
∑
i,j

(
d(ϕi

j)⊗ ei ⊗ ej +
∑
k

ϕi
jA

k
i ⊗ ek ⊗ ej −

∑
k

ϕi
jA

j
k ⊗ ei ⊗ ek

)
= dϕ+ Aϕ− ϕA

as desired. Notice that the distinction between Aϕ and ϕA is simply whether we sum
over the columns of A or the rows of A. The notation dϕ here refers to the exterior
derivative (determined by a local frame) acting on a section of EndE.

Now by Fact 28 (and the corollary following from it), there is a unique degree +1
graded antiderivation of Ω•(M ;E) extending the connection ∇ from sections to E-valued
forms of any degree. We denote this antiderivation by the same symbol ∇,

∇ : Ωℓ(M ;E) → Ωℓ+1(M ;E)
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for any ℓ ∈ N. By definition, it satisfies the product rules

∇(ω ∧ α) = dω ∧ α + (−1)degωω ∧∇α
∇(α ∧ ω) = (∇α) ∧ ω + (−1)degωα ∧ dω

for every ω ∈ Ω•(M) and α ∈ Ω•(M ;E). The only antiderivation that we care about in
this note is this exterior derivative of bundle-valued forms uniquely determined by a
connection. In summary we have the following fact:

Fact 32. Let E → M be a vector bundle with connection ∇. There exists a unique
graded antiderivation ∇ : Ω•(M ;E) → Ω•(M ;E) which coincides with ∇ on sections of
E. In other words, ∇ extends the action of the connection to bundle-valued forms of
any degree.

To be precise, ∇ acts on decomposable E-valued forms according to the formula

∇(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧ (∇s)

where ω ∈ Ωk(M) and s ∈ Γ(E).

By Fact 32 the induced connection ∇̃ on EndE → M extends to a covariant
derivative operator

∇̃ : Ωk(M ; EndE) → Ωk+1(M ; EndE)

Using the local expression for ∇̃ given in Fact 31, we can derive a similar local expression
for the operator ∇̃.

Fact 33. Let E →M be a vector bundle with connection ∇, with local decomposition
∇ = d + A. Let ∇̃ denote the induced connection on EndE → M . The operator
∇̃ : Ωℓ(M ; EndE) → Ωℓ+1(M ; EndE) satisfies

∇̃α = dα + A ∧ α− (−1)ℓα ∧ A

for every α ∈ Ωℓ(M ; EndE).

Proof. Write ∇ = d + A with respect to a local frame (ei) for E and let (ej) denote
the dual frame for E∗. Take any decomposable form α = ω ⊗ ϕ ∈ Ωℓ(M ; EndE) and
calculate

∇̃α = ∇̃(ω ⊗ ϕ)

= dω ⊗ ϕ+ (−1)ℓω ∧ ∇̃ϕ
= dω ⊗ ϕ+ (−1)ℓω ∧ (dϕ+ Aϕ− ϕA)

= dω ⊗ ϕ+ (−1)ℓω ∧ (dϕ) + (−1)ℓω ∧ (Aϕ)− (−1)ℓω ∧ (ϕA).

Now it’s straightforward to identify the first term in this equation as

dα = d(ω ⊗ ϕ) = dω ⊗ ϕ+ (−1)ℓω ∧ (dϕ)
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and writing A =
∑

i ai ⊗ dxi the second term in the equation is

ω ∧ (Aϕ) =
∑
i

(ω ∧ dxi)⊗ aiϕ

=
∑
i

(−1)ℓ(dxi ∧ ω)⊗ aiϕ

=
∑
i

(−1)ℓ(dxi ⊗ ai) ∧ (ω ⊗ ϕ)

= (−1)ℓA ∧ α.

So all that remains is to show that α∧A = ω ∧ (ϕA). This one seems a little bit trickier
than the previous two terms, so we inspect it in local coordinates. We have

ω ∧ (ϕA) = ω ∧

(∑
ijk

ϕi
jA

j
k ⊗ ei ⊗ ek

)

= ω ∧

(∑
ijkm

ϕi
jΓ

j
mkdx

m ⊗ ei ⊗ ek

)
=
∑
ijkm

ϕi
jΓ

j
mk(ω ∧ dxm)⊗ ei ⊗ ek

although it’s not immediately clear that this is the same as α ∧ A, direct calculation
shows that it is indeed:

α ∧ A =
∑
i

(ω ∧ dxi)⊗ (ϕai)

=
∑
i

(ω ∧ dxi)⊗

(∑
jkm

ϕk
j (ai)

j
mek ⊗ em

)
=
∑
ijkm

ϕk
jΓ

j
im(ω ∧ dxi)⊗ ek ⊗ em

permuting indices and comparing the two equations shows that ω∧ (ϕA) = α∧A exactly
as claimed.

The following product rule will also be useful in the next section:

Fact 34. For any θ ∈ Ωk(M ; EndE) and α ∈ Ωℓ(M ;E) we have

∇(ω ∧ θ) = (∇̃θ) ∧ α + (−1)kθ ∧∇α

Proof. The formula follows directly by writing down all of the definitions, calculating
both sides of the equation on decomposable forms, and then comparing. It’s a good
exercise for getting a hang of all the definitions and how they interact. Here are the
details: for any decomposable forms θ ∈ Ωk(M ; EndE) and α ∈ Ωℓ(M ;E), write

θ = ω ⊗ ϕ and α = η ⊗ s
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where ω ∈ Ωk(M), η ∈ Ωℓ(M), ϕ ∈ Γ(EndE) and s ∈ Γ(E). Then by definition,

∇(θ ∧ α) = ∇((ω ∧ η)⊗ ϕ(s))

= d(ω ∧ η)⊗ ϕ(s) + (−1)k+ℓ(ω ∧ η) ∧∇(•)(ϕ(s)).
(15)

On the other side of the equation we have

∇̃θ ∧ α = ∇̃(ω ⊗ ϕ) ∧ (η ⊗ s)

= (dω ⊗ ϕ) ∧ (η ⊗ s) + (−1)k(ω ∧ ∇̃ϕ) ∧ (η ⊗ s)

= (dω ∧ η)⊗ ϕ(s) + (−1)k(ω ∧ η)⊗ (∇̃ϕ)(s)
= (dω ∧ η)⊗ ϕ(s) + (−1)k(ω ∧ η)⊗ (∇(•)ϕ(s)− ϕ(∇(•)s))

as well as

θ ∧ (∇α) = (ω ⊗ ϕ) ∧
(
dη ⊗ s+ (−1)ℓη ∧∇s

)
= (ω ∧ dη)⊗ ϕ(s) + (−1)ℓ(ω ∧ η)⊗ ϕ(∇(•)s).

(16)

In all of these equations we have used the notation (•) to denote the vector field argument.
Expanding the product rule d(ω ∧ η) in equation (15) and multiplying equation (16) by
(−1)k, we end up with the desired formula.

Given any α ∈ Ωℓ(M ;E), it’s also useful to understand the action of the derivative
∇α ∈ Ωℓ+1(M ;E) on vector fields.

Fact 35. Let E → M be a vector bundle with connection ∇. For any α ∈ Ωℓ(M ;E),
the map

∇α : X(M)ℓ+1 → Γ(E)

is given by

(∇α)(X0, . . . , Xℓ) =
ℓ∑

i=0

(−1)i∇Xi

(
α
(
X0, . . . , X̂i, . . . , Xℓ

))
+

∑
0≤i<j≤ℓ

(−1)i+jα
(
[Xi, Xj], X0, . . . , X̂i, . . . , Xℓ

)
Just like the exterior derivative of real-valued differential forms, the covariant

derivative induced by a connection commutes with pullbacks.

Fact 36. Let E → N be a vector bundle with connection ∇ and φ :M → N a smooth
map. For any α ∈ Ω•(N ;E) we have

φ∗(∇α) = ∇(φ∗α)

i.e. the exterior derivative commutes with pullbacks.
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9 Curvature of a connection
Let E → M be a vector bundle with connection ∇. Given vector fields X, Y ∈ X(M)
and a section s ∈ Γ(E) we define a map

R∇ : X(M)2 × Γ(E) → Γ(E)

R∇(X, Y )(s) = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

called the curvature of the connection ∇. We say that ∇ is a flat connection if
R∇ = 0.

Example 25 (Flat connection). The exterior derivative on differential forms is a flat
connection because its curvature is d2 = 0.

Fact 37. The curvature R∇ is C∞(M)-linear in each of its arguments, and antisymmetric
with respect to its vector field arguments. Therefore, the curvature is an antisymmetric,
endomorphism-valued operator

R∇ : X(M)2 → Γ(EndE).

i.e. R∇ ∈ Ω2(M ; EndE).

Proof. The fact that the curvature is R-linear is clear by the R-linearity of the connection
∇. So it suffices to check homogeneity with respect to C∞(M). Take any f ∈ C∞(M),
X, Y ∈ X(M) and s ∈ Γ(E). Then

R∇(fX, Y )s = ∇fX∇Y s−∇Y∇fXs−∇[fX,Y ]s

= f∇X∇Y s−∇Y (f∇Xs)−
(
∇f [X,Y ]s−∇Y (f)Xs

)
= f∇X∇Y s− (Y (f)∇Xs+ f∇Y∇Xs)− f∇[X,Y ]s+ Y (f)∇Xs

= f∇X∇Y s− f∇Y∇Xs− f∇[X,Y ]s

= fR∇(X, Y )s.

A similar procedure shows that the curvature is also C∞(M)-linear in the Y -variable and
the s-variable. It’s also easy to see that the curvature is antisyummetric with respect to
X and Y because interchanging these arguments yields

R∇(Y,X) = ∇Y∇X −∇X∇Y −∇[Y,X]

= ∇Y∇X −∇X∇Y −∇−[X,Y ]

= ∇Y∇X −∇X∇Y +∇[X,Y ]

= −R∇(X, Y ).

Since the curvature is C∞(M)-multilinear, for every pair of vector fields X, Y ∈ X(M)
we have a module endomorphism R∇(X, Y ) : Γ(E) → Γ(E), which is to say that

R∇(X, Y ) ∈ End(Γ(E)) ≃ Γ(EndE)

so R∇ is an End(E)-valued 2-form on M .
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Another consequence of Fact 37 is that R∇ is a point operator, so it makes sense
to apply the curvature operator pointwise to the fibers of E. Thus for any p ∈ M ,
v, w ∈ TpM and ξ ∈ Ep we can make sense of the expression

R∇(v, w)(ξ) ∈ Ep.

There is a simple relation between the curvature of a connection and the curvature of
any pullback:

Fact 38. Let E → N be a vector bundle with connection ∇ and let φ : M → N be a
smooth map. Let ∇φ denote the pullback connection on the pullback bundle φ∗E →M .
For every p ∈M , v, w ∈ TpM and ξ ∈ Eφ(p) we have

R∇φ

(v, w)(ξ) = R∇(dφp(v), dφp(w))(ξ)

which is to say that R∇φ
= φ∗R∇.

Since it’s easy to take the pullback whenever we want to consider the slightly more
general case of sections along a map φ, we will just focus on the notationally simpler
situation where φ = id.

Let’s return to the exterior derivative operator ∇ induced by a connection ∇ on a
vector bundle E →M . A key fact about the exterior derivative acting on real-valued
differential forms is that it satisfies d ◦ d = 0, which is to say that differential forms
assemble a chain complex

· · · −→ Ωj−1(M)
dj−→ Ωj(M)

dj+1

−−→ Ωj+1(M) −→ · · ·

and hence we can form the de Rham cohomology groups (really R-vector spaces)

Hj
dR(M) = ker dj+1/ im dj

which provide information about the topology of M . A natural question to investigate
is whether the exterior derivative ∇ exhibits the same behavior, and whether we can get
a chain complex of bundle-valued forms, etc. In the following theorem we will show that
the curvature R∇ is precisely the obstruction against (Ω•(M ;E),∇) forming a chain
complex.

Theorem 2. Let E →M be a vector bundle with connection ∇. For any fixed k ≥ 0,
consider the sequence

Ωk(M ;E)
∇−→ Ωk+1(M ;E)

∇−→ Ωk+2(M ;E)

For every α ∈ Ωk(M ;E) we have

∇ ◦∇(α) = R∇ ∧ α

thus ∇ ◦∇ = 0 if and only if R∇ = 0, if and only if ∇ is a flat connection.
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Proof. First consider the case k = 0, so that α = s ∈ Γ(E). Then for every X, Y ∈ X(M)
we have by Fact 35,

(∇ ◦∇)(s)(X, Y ) = ∇X(∇s(Y ))−∇Y (∇s(X))−∇s([X, Y ])

= ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

= R∇(X, Y )s

which is to say that (∇ ◦∇)s = R∇ ∧ s. Now for the general case k ≥ 0, it suffices to
take a decomposable element α = ω ⊗ s and compute

(∇ ◦∇)α = (∇ ◦∇)(ω ⊗ s)

= ∇(dω ⊗ s) + (−1)k∇(ω ∧∇s)
= d2ω ⊗ s+ (−1)k+1dω ∧∇s

+ (−1)k
(
dω ∧∇s+ (−1)kω ∧ (∇ ◦∇)s

)
= ω ∧ (∇ ◦∇)s

= ω ∧ (R∇ ∧ s)

and now the result follows from the observation that

ω ∧ (R∇ ∧ s) = (R∇ ∧ s)⊗ ω = R∇ ∧ (s⊗ ω) = R∇ ∧ α

where we have used graded anticommutativity of the wedge product from equation (9),
together with the compatibility result of Fact 27.

Choose local frames (∂i) for TM and (ek) for E. Write

R∇(∂i, ∂j)ek =
∑
ℓ

Rℓ
ijkeℓ

for some smooth coefficient functions Rℓ
ijk. Directly from the definition of the curvature,

we calculate

R∇(∂i, ∂j)ek = ∇∂i(∇∂jek)−∇∂j(∇∂iek)−∇[∂i,∂j ]ek

= ∇∂i

(∑
ℓ

Γℓ
jkeℓ

)
−∇∂j

(∑
ℓ

Γℓ
ikeℓ

)
− 0

=
∑
ℓ

∇∂i

(
Γℓ
jkeℓ
)
−∇∂j

(
Γℓ
ikeℓ
)

=
∑
ℓ

(
∂iΓ

ℓ
jkeℓ + Γℓ

jk∇∂ieℓ
)
−
(
∂jΓ

ℓ
ikeℓ + Γℓ

ik∇∂jeℓ
)

=
∑
ℓ

(
∂iΓ

ℓ
jkeℓ + Γℓ

jk

∑
m

Γm
iℓ em

)
−

(
∂jΓ

ℓ
ikeℓ + Γℓ

ik

∑
m

Γm
jℓem

)
=
∑
ℓ,m

(
∂iΓ

ℓ
jk − ∂jΓ

ℓ
ik + Γm

jkΓ
ℓ
im − Γm

ikΓ
ℓ
jm

)
eℓ

and therefore
Rℓ

ijk =
∑
m

∂iΓ
ℓ
jk − ∂jΓ

ℓ
ik + Γm

jkΓ
ℓ
im − Γm

ikΓ
ℓ
jm.
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Looking at the structure of this equation, we notice that the first two terms involve
derivatives of the connection coefficients and the last two terms together look like a
commutator formed by the connection coefficients. We have already encountered objects
of this type, namely the derivative dA and the wedge product A ∧ A of the connection
1-form A associated with the connection ∇. In fact,

∂aj
∂xi

(ek) =
∑
ℓ

∂iΓ
ℓ
jkeℓ

∂ai
∂xj

(ek) =
∑
ℓ

∂jΓ
ℓ
ikeℓ

[ai, aj]ek =
∑
ℓ

(∑
m

Γℓ
imΓ

m
jk − Γℓ

jmΓ
m
ik

)
eℓ

where the objects on the left act on ek via matrix multiplication. Therefore

R∇(∂i, ∂j)ek =
∑
ℓ

Rℓ
ijkeℓ

=
∑
ℓ,m

(
∂iΓ

ℓ
jk − ∂jΓ

ℓ
ik + Γm

jkΓ
ℓ
im − Γm

ikΓ
ℓ
jm

)
eℓ

=

(
∂aj
∂xi

− ∂ai
∂xj

+ [ai, aj]

)
ek

and by equations (13) and (14) this is to say that

(R∇ ∧ s)(•, •) = R∇(•, •)s = (dA+ A ∧ A)s

for any section s ∈ Γ(E). This gives us the local decomposition

∇ ◦∇ = R∇ ∧ (•) = dA+ A ∧ A

which is an equality of operators Ω0(M ;E) → Ω2(M ;E). Note that the first two
expressions make sense acting on any E-valued k-form, but the last expression only
makes sense acting on sections of E. We summarize the preceding discussion with the
following fact:

Fact 39 (Curvature in local coordinates). Let E →M be a vector bundle with connection
∇. In local coordinates, the curvature R∇ has components

Rℓ
ijk =

∑
m

∂iΓ
ℓ
jk − ∂jΓ

ℓ
ik + Γm

jkΓ
ℓ
im − Γm

ikΓ
ℓ
jm

and we have a local decomposition

∇ ◦∇ = R∇ ∧ (•) = dA+ A ∧ A

in terms of the connection 1-form A associated with the connection.

For a vector bundle E → M with connection ∇ and induced connection ∇̃ on
EndE → M , the curvature 2-form is an element R∇ ∈ Ω2(M ; EndE) and so we can
consider the derivative ∇̃(R∇) ∈ Ω3(M ; EndE). In fact, this derivative is zero.
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Fact 40 (Bianchi identity). Let E →M be a vector bundle with connection ∇ and let
∇̃ denote the induced connection on EndE →M . Then ∇̃(R∇) = 0.

Proof. Take any α ∈ Ω•(M ;E). We’re going to use Theorem 2 to calculate (∇)3(α) in
two different ways. First we have

(∇)3(α) = (∇)2(∇α) = R∇ ∧∇α

and the other hand we also have (using the product rule from Fact 34)

(∇)3(α) = ∇
(
(∇)2(α)

)
= ∇(R∇ ∧ α)
= ∇̃(R∇) ∧ α + (−1)2R∇ ∧∇α
= ∇̃(R∇) ∧ α + (∇)3(α)

and therefore ∇̃(R∇)∧ α = 0 for every α. We conclude that ∇̃(R∇) = 0 as claimed.
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