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The goal of this report is to define the notion of ideal tetrahedron and the shape parameters
associated with its edges in hyperbolic space, prove some basic facts about shape parameters, and then
conclude with a brief description of how these concepts are typically used in hyperbolic geometry (by
Thurston, for example).

Let H3 denote the three-dimensional hyperbolic space. An ideal tetrahedron T in H3 is the
convex hull of four points (the vertices of T ), all of which lie on the sphere at infinity S2

∞ ⊂ H3. In
other words, an ideal tetrahedron is a tetrahedron whose vertices are ideal points. We picture this
object as a (hyperbolically) distorted Euclidean tetrahedron whose vertices have been stretched to
infinity (Figure 1).

Figure 1: An ideal tetrahedron.

Now consider a horospherical cross-section of one of the cusps of T (Figure 2). The cross-section
of this cusp produces an honest Euclidean triangle, say with vertices v1, v2, v3 ∈ C and therefore we
define the dihedral angles of T to be the complex numbers z1, z2, z3 ∈ C \ {0, 1,∞} such that

Arg(zi) = angle at vi,

|zi| = ratio of the lengths of the sides incident to vi.

In other words, z1 is the complex number which rotates the side v3 − v1 counterclockwise onto v2 − v1,
and similarly for the other two dihedral angles. Now we define the shape parameter of the edge
e ∈ T to be the dihedral angle z(e) of the vertex lying on e in the horospherical cross-section.

A priori, we do not really know yet that the shape parameter of any given edge in T is well-defined
– technically speaking have associated two dihedral angles to each edge, one for each “half” of the edge.
We will prove shortly that in fact these two dihedral angles coincide, which shows that the shape
parameter is in fact well-defined.

Remark. There is another issue which potentially obstructs the well-definedness of the shape parameter.
Is there a unique horospherical cross-section of any cusp of T? If not, we would need to show that all
of the different horospherical cross-sections produce similar triangles, so that the shape parameters are
independent of the choice of cross-section. I do not attempt to resolve this technicality in this report.
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Figure 2: The horospherical cross section with a cusp of T yields a Euclidean triangle, and the dihedral
angles zi can be associated to each vertex of this triangle.

Fact 1. Any one of the three dihedral angles determines the other two.

Proof. This is a straightforward computation which follows directly from the definition of the dihedral
angles. The complex number z1 which rotates v3 − v1 onto v2 − v1 is exactly

z1 =
v2 − v1
v3 − v1

and similarly

z2 =
v3 − v2
v1 − v2

z3 =
v1 − v3
v2 − v3

so we calculate

z2 =
v3 − v2
v1 − v2

=
v3 − v1 + v1 − v2

v1 − v2

=
v3 − v1
v1 − v2

+ 1

= 1− 1

z1

and also

z3 =
v1 − v3
v2 − v3

=
v1 − v2 + v2 − v3

v2 − v3

=
v1 − v2
v2 − v3

+ 1

=
1

z2
+ 1

=
1

1− z1

so we can solve for z2 and z3 directly in terms of z1.
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Fact 2. Opposite edges have the same shape parameter.

Proof. We follow Thurston’s argument by symmetry in [1]. For any pair of opposite edges in T , the
shortest geodesic between them must meet both of the edges at right angles – thus the perpendicular
bisector joining the opposite edges is an axis of symmetry of T (Figure 3). Since there are three pairs
of opposite edges we obtain three axes of symmetry. The group of permutations of the four vertices of
T via rotational symmetries is A4; explicitly, we can describe the elements of A4 as rotations in the
following way:

1. The order 2 elements {(12)(34), (14)(23), (13)(24)} can each be associated with a pair of opposite
edges (hence an axis of symmetry) – these elements rotate T by π about the axis. If we focus
on one of the edges bisected by the axis of symmetry, we see that the effect of the rotation is to
simply interchange the vertices of this edge.

2. The order 3 elements {(123), (132), (124), (142), (234), (243), (134), (314)} fix one vertex of T and
then spin T by 2π/3 around the line joining the vertex to its opposite face.

Let σ be an order 2 element of A4, i.e. σ rotates by π about an axis of symmetry. Then σ preserves the
pair of edges bisected by this axis, hence it preserves their shape parameters. As a result, the shape
parameters are preserved by the action of the subgroup of order 2 elements of A4,

Z2 × Z2 ≃ {id, (12)(34), (14)(23), (13)(24)}.

A priori, we could assign a different shape parameter to each half-edge of T . There are 12 half-edges, so
we have a correspondence between shape parameters of T and elements of A4. On the other hand, since
Z2 × Z2 ⊂ A4 preserves the shape parameters, we don’t lose any information by taking the quotient

A4/(Z2 × Z2) ≃ Z3 ≃ {pairs of opposite edges of T},

thus we obtain a one-to-one correspondence

{shape parameters of T} ≃ {pairs of opposite edges of T}.

In other words, opposite pairs of edges have the same shape parameters.

Figure 3: Three pairs of opposite edges yield three perpendicular bisectors, which are axes of symmetry
around which the subgroup Z2 × Z2 ⊂ A4 rotates T .

As a corollary, we can use Fact 1 and Fact 2 to deduce the well-definedness of the shape parameter,
i.e. there is a unique number associated to each edge. Fix an edge e on the ideal tetrahedron T and
consider two triangles which determine a shape parameter z1 for one half of e and w1 for the other half.
Then z3 and w3 are shape parameters for opposite edges, so z3 = w3 by Fact 2. But then

z1 = 1− z−1
3 = 1− w−1

3 = w1
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by the calculations from Fact 1, so the shape parameters assigned to opposite halves of e coincide. In
the words of Jeff Weeks, “a single complex dihedral angle completely parameterizes the shape of an ideal
tetrahedron.” Since a single complex number z ∈ C \ {0, 1,∞} can be used to describe the parameters
of all of the edges of an ideal tetrahedron T , we can simply say that z is the shape parameter of T . We
have yet to determine how the shape parameter can be calculated from the vertices of T . In fact, it is
straightforward to prove that for the tetrahedron with vertices a, b, c, d, the shape parameters are given
by the cross ratios

z(ab) =
(b− a)(c− d)

(a− d)(b− c)

z(bc) =
(c− a)(b− d)

(c− d)(b− a)

z(cd) =
(b− c)(a− d)

(b− d)(a− c)

We will use this fact to prove that the shape parameter does not depend upon the choice of orientation
of the edges.

Fact 3. The shape parameter does not depend on the orientation of the edges.

Proof. We follow Thurston’s argument in [1]. Fix an edge e with shape parameter z and let a, b, c, d
denote the vertices of T with e joining a and b. Since there is a unique orientation-preserving isometry
of H3 mapping a, b, c to 0, 1,∞ we can assume without loss of generality that three of the vertices of T
lie at a = 0, b = 1, and c = ∞. Fix some choice of orientation of e, and consider the two faces F1, F2 of
T sharing the edge e. The orientation on e determines orientations on each of these faces, one clockwise
and the other counterclockwise. There is a unique orientation-preserving isometry of H3 mapping F1

onto F2 which fixes a and b, in fact it is the Mobius transformation given by

ϕ(w) = [w, 1; 0, d] =
w(1− d)

w − d
.

We note that the rotational component of ϕ has rotation angle Arg d(d− 1)−1 and the translational
component of ϕ has magnitude |d(d− 1)−1|. Moreover, using the cross-ratio formula for z we note that

z = [0, 1;∞, d] =
d

d− 1

so the shape parameter is exactly the complex number whose angle is the rotational angle of ϕ and
whose magnitude is the translation distance of ϕ. Now if we change the orientation of e then our
orientation-preserving isometry becomes ϕ−1, which possesses the same angle of rotation and translation
distance as ϕ. Thus the shape parameter z is the same in either case.

Figure 4: The orientation-preserving isometry ϕ encodes the data of the shape parameter z(e).
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We want to be able to glue together ideal tetrahedra in such a way that the resulting triangulation
determines the structure of a hyperbolic 3-manifold (on a knot or link complement, for example). Thus,
it is natural to ask: what conditions on the tetrahedra will ensure that we obtain a (complete or
incomplete) hyperbolic structure? We can formulate a nice condition in terms of the shape parameters
of the involved tetrahedra. Suppose that we glue ideal tetrahedra T1, . . . , Tn along a common edge e in
such a way that the triangulation produces a hyperbolic manifold structure, and let z1, . . . , zn denote
the shape parameters corresponding to e. Without loss of generality suppose that T1 is in standard
position, i.e. three of its vertices lie at (0, 1, t1,∞) and suppose that e is the edge joining 0 and ∞.
Then using the cross ratio formula we compute

z1 =
t1 − 0

1− 0
= t1.

We want to glue the second tetrahedra along to the first along a face so that the resulting vertices are
(0, t1, t2,∞). Using the cross ratio formula again we find that

z2 =
t2 − 0

z1 − 0
= t2/z1,

thus t2 = z1z2. Repeating this procedure, we find that after the appropriate gluing, the vertices of
the kth tetrahedra Tk are (0, tk−1, tk,∞) with tk = z1 · · · zk. Since we have glued the tetrahedra in
such a way that they produce a hyperbolic manifold structure, we have some restrictions on the shape
parameters: around any point on e we can find an open neighborhood which is isometric to an open
ball in H3 – thus we must have

n∑
i=1

Arg zi = Arg(z1 · · · zn) = Arg(tn) = 2π

and moreover, since the faces of the tetrahedra must be glued together consistently, we have tn = 1
hence z1 · · · zn = 1. Thus we have proven that the edge gluing equations hold for the triangulation.

Fact 4 (Edge gluing equations). Suppose that we glue T1, . . . , Tn ideal tetrahedra with shape parameters
z1, . . . , zn to form an ideal triangulation of a hyperbolic manifold. Then

z1 · · · zn = 1
n∑

i=1

Arg zi = 1

Figure 5: T2 is glued to T1 along a face sharing the edge between 0 and ∞.

In fact, one can prove that the converse also holds: an ideal triangulation on M which satisfies the
edge gluing equations produces a hyperbolic structure on M (which may be incomplete). As a result of
this “if and only if” statement, it is of interest to study the deformation variety, which is the set

D = {z ∈ (C \ {0, 1,∞})n : z solves the edge gluing equations},
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each point of which defines a hyperbolic manifold structure. As described by Weeks [2], in practice, the
edge gluing equations are supplemented by cusp equations or Dehn filling equations, and then solved
using Newton’s method to find a hyperbolic structure.
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