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Abstract

Using the K group of a compact Hausdorff space to motivate the definition
of the K° group of a C*-algebra, we introduce operator K-theory as a non-
commutative analogue of topological K-theory.
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1 Topological K-theory

Given a locally compact Hausdorff space X, what are all of the possible vector
bundles over X7 A reasonable approach to this question is to construct a group
K°(X) consisting of isomorphism classes of vector bundles over X, which might
encode some information about which vector bundles X admits.

First of all, suppose that X is compact. Let £ — X be a vector bundle over
X. We let [E] denote the equivalence class of vector bundles isomorphic to E, and
consider the set of isomorphism classes:

V(X) ={[E] : E = vector bundle over X}

Note that V(X) is a commutative monoid with respect the operation of direct
sum of vector bundles over X. Namely, given two vector bundles p : E — X and
q : ' — X we define their direct sum by

EoF=||EoF,
rzeX

and

pBq: FOF —- X
(e, f) = ple) = q(f)

so that F ® F — X is another vector bundle over X. The identity element of this
monoid is the rank-0 trivial bundle

[0] = [X x {z}]

for any x € X. Unfortunately, V(X)) is not a group as it lacks inverses.



Example 1.
(a) When X = {x} is a single point, we have V(X) ~ NU {0}.
(b) Letting Vg and Vi refer to real and complex vector bundles respectively, we

have V¢ (S') ~ NU {0} and V&(S') ~ (NU {0}) x Zs.

In order to turn V(X) into a group we will use the Grothendieck group
construction. The general idea is to turn a commutative semigroup into a group in
a “minimal” way. Given a commutative semigroup H and a subsemigroup K C H,
define an equivalence relation on the product H x K by

(h1,k1) ~ (he, k) <= (hika)x = (hoky)z for some x € K

Here we are thinking of the pair (h,k) € H x K as a fraction h/k, so that,
heuristically speaking, (h1, k1) ~ (he, k2) holds if and only if hy/k; = ha/ks. Then
we consider the set of equivalence classes

[H][K]™" = (H x K)/~ = {[(h, k)]}

and note that this is a commutative monoid with respect to the multiplication
inherited from H:

[(h1, k1)) - [(ha, k2)] = [(hiha, kiks)]
where the identity element is

1= [(z, )]

for any x € K. The point of this construction is that, in this quotient space, the
ordered pairs of elements of K are invertible: for any k1, ks € K we have

(K1, k2)][(ka, k)] = [(kika, kokr)] = 1

which is to say that [(k1,k2)]™! = [(k2, k1)]. In essence, the commutative monoid
[H][K]~! is obtained from H by inverting the elements of K; therefore, in the
special case that H = K, we obtain an abelian group

called the Grothendieck group of H. We note that G(H) is the “minimal” group
extending the semigroup H in the sense that any homomorphism ¢ : H — S of
semigroups (which sends H to invertible elements of S) extends uniquely to a
homomorphism ¢ : G(H) — S. An immediate consequence is that G is a covariant
functor from the category of commutative semigroups to the category of abelian
groups:

{commutative semigroups} <> {abelian groups}
¢ Hy — Hy — G(¢):G(H)) — G(Hs)
Example 2.
(a) G(N,+) = (Z,+)
(b) G(N,-) = (Q0,")



Now we return to the situation where X is a compact Hausdorff space and
V(X) is the commutative monoid of isomorphism classes of vector bundles over
X. In this case we use the Grothendieck group construction to define the group

K%X)=G(V(X)) = {[E] - [F] : E, F = vector bundles over X}

which consists of all formal differences of isomorphism classes of vector bundles
over X. Notice first of all that K© is a contravariant functor from the category of
compact spaces to the category of abelian groups because V is contravariant and
G is covariant. First, V' takes any continuous map ¢ : X — Y between compact
spaces and sends it to the map ¢* : V(Y) — V(X) given by

o [E—=Y]— [¢°E — X]

where ¢*E — X denotes the pull-back bundle induced by ¢. Then, as ¢* is
a morphism in the category of commutative monoids, the G functor turns it a
morphism

G(¢") : G(V(Y)) = G(V(X))

in the category of abelian groups. In other words this is the morphism K%(¢) :
K°(X) — K°Y), which we shall henceforth denote by ¢*.

Fact 1 (Homotopy invariance). Let X,Y be compact spaces and f,g : X — Y
continuous maps. If f and g are homotopic then f* = g* : K°(X) — K°(Y).

Example 3. For any contractible space X we have K°(X) ~ K%({z¢} by homo-
topy invariance, and therefore

KO(X) ~ K"({z0}) = G(V({xo})) = GINU{0}) = Z

In particular, for any nonempty compact space X, the function p : X — {z¢}
induces an injective morphism p* : K%({zo}) — K°(X), and therefore K°(X)
always contains a copy of Z. We define the reduced K°-group of X by modding
out by any one of these copies of Z:

K°(X) = K°(X)/Z.

In order to get a working theory out of this K-group it’s necessary to define K°
for non-compact spaces too. For any locally compact Hausdorff space X we let
X7 denote the one-point compactification of X and then define

KO%(X) = K°(Xx™)

i.e. the reduced K°-group of the one-point compactification of X. For the
remainder of this section we will assume X is a locally compact Hausdorff space.
Given any closed subspace Y C X, the sequence

Y <5 XL XY
induces a short exact sequence of K%-groups,

KOX/Y) L KO(X) 5 KOY)



given by the composition [E] — [¢*E] — [i*¢*E]. Moreover, for each n > 1 we
define the nth K-group as

K"(X)=K%X x R")
and so the same argument gives another short exact sequence
KMXx/)Y) S kX)) S k(Y)

for every n > 1. For each n one can construct a connecting homomorphism
§: K"(X) — K" YY) and thereby get an infinite long exact sequence of K-
groups which terminates in K°(Y). In fact, the sequence is actually cyclical:

Fact 2 (Bott periodicity). For any locally compact Hausdorff space Z we have
K""2(Z) ~ K™(Z) for everyn >0

when complex vector bundles are considered. Furthermore, we have
K"8(Z) ~ K"(Z) for everyn >0

when real vector bundles are considered.

This beautiful fact reduces the study of K-groups to the study of the two groups
K°(X) and K'(X) = K% X x R) (when considering complex vector bundles over
X).

2 Operator K-theory

In this section we want to explain the following common description of operator
K-theory:

Operator K -theory is a non-commutative analogue of topological

K-theory for C*-algebras. (Wikipedia)

We will conclude by explaining the connection between several equivalent definitions
of the K%-group of a C*-algebra.

Suppose we have a compact Hausdorff space X. There is a one-to-one cor-
respondence between vector bundles over X and finitely- generated projective
modules over C(X) given by the functor I' sending any vector bundle E to the
C(X)-module I'(E) of sections of E. Indeed, given any vector bundle F — X, by
Swan’s theorem we can find a vector bundle F' — X such that E® F ~ X x R"
is a trivial bundle. Therefore

where the latter is a finitely-generated free module over C(X). Thus, we have shown
that T'(E) is a finitely-generated projective module over C'(X). It’s not difficult to
show that I' gives a one-to-one correspondence by constructing an explicit “inverse”
which associates to any such module M a vector bundle W (M) — X such that
['(U(M)) = M. This observation gives us the following interpretation of the group
K°(X):



Fact 3. Let X be a compact Hausdorff space. Then K°(X) can be identified with
the group of formal differences [M]—[N] of isomorphism classes of finitely-generated
projective modules over C(X).

Now for any commutative unital C*-algebra A, the Gelfand-Naimark theorem
gives us an isometric *-isomorphism A ~ C'(X) for some compact space X (recall
that X consists of characters on A, and the *-isomorphism is given by A — C(X),
a — a where a(¢) = ¢(a) for every character ¢). Therefore, it makes sense to
define the Ky group of the C*-algebra A by the prescription

Ko(A) = K°(X).

Thus by Fact 3, we have a natural generalization to the non-commutative case:
for any unital C*-algebra A, let Ky(A) be the group of formal differences of
isomorphism classes [M] — [N] of finitely-generated projective modules over A.
In other words, if M(A) denotes the monoid of isomorphism classes of finitely-
generated projective A-modules, then the Kg-group of A is the Grothendieck
group
Ko(A) = G(M(A)).

This is why the operator K-theory is often described as a non-commutative version
of topological K-theory.

The definition of Ky(A) we've taken here arises naturally from the topological
K-theory group K°(X), but it’s not always the most useful definition in practice.
The group Ky(A) can be realized in several other equivalent ways, which are often
more concrete.

1. Let A be a unital C*-algebra and define the matrix algebra of A as

n>1

and recall that two idempontents p, ¢ € M (A) are orthogonal if pg = gp = 0.
In this case it makes sense to define their orthogonal sum p ® ¢ € My (A).
We say that two idempotents p and ¢ are equivalent if they are similar in
the matrix algebra, i.e. apa™! = ¢ for some invertible a € A. In this case we
write p ~ q.

Consider the set of equivalence classes of projections in the matrix algebra:

Vi ={[p] : p € Ms(A) idempotent}
This set is a commutative semigroup with respect to the operation

p] +[d] = [p" & ¢]
where p’ L ¢/, p’' ~p and ¢’ ~ q.

2. By the Gelfand-Naimark-Segal construction we can find a faithful represention
A — B(H4) of A as bounded operators on some Hilbert space H4 (this is
the GNS representation). Let K(H4) denote the set of compact operators
on H 4, and consider the set of equivalence classes of projections

Vo ={[P] : P € K(H}4) projection}

Once again, this is a commutative semigroup with respect to the same
operation of orthogonal sum as above.



Just like we did in section 1, we can consider the Grothendieck groups G(V})
and G(V3), which consist of formal differences of equivalence classes of idempotents
and compact projections, respectively. Then

Ko(4) ~ G(1) ~ G(12)

so we have three equivalent realizations of the Ky-group of A. To see why these
are isomorphic, let’s write

V ={[M]: M = fgp A-module}
so that Ko(A) = G(V) by definition. We have isomorphisms
¢:Vi—=V, [p] = [p(A")]

and
p: Vo=V, [P]— [P(Ha)

which therefore induce isomorphisms on the respective Grothendieck groups.
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