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Abstract

We prove the equivalence of several common definitions of the tangent space
to a smooth manifold, and then show that this equivalence is “natural” in the
sense that the differentials are related via factorization through the corresponding
isomorphism between any two tangent spaces.
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1 Preliminaries
We denote smooth charts on an n-dimensional smooth manifold by ϕ : U ⊆M →
Rn. Given p ∈ M , without any loss of generality we will assume that any chart
taken around p is centered at p, meaning that ϕ(p) = 0.

Given a smooth map f : M → R we will call the map f̃ = f ◦ ϕ−1 : ϕ(U) ⊆
Rn → R a local coordinate representation for f with respect to the smooth
chart ϕ. In particular, the standard Euclidean coordinate functions x̃i : Rn → R
are local coordinate representations for the functions xi = x̃i ◦ ϕ : U ⊆ M → R
with respect to some smooth chart ϕ. Often, by an intentional (but harmless)
abuse of notation, we will denote both points in M and points in Rn under the
image of a smooth chart ϕ by the same symbol x.

Throughout this note we will utilize Taylor’s theorem for smooth functions
f : Rn → R with an integral form for the remainder. In order to state the theorem
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precisely we fix the following standard notation: for any m-tuple (i1, i2, . . . , im) of
indices 1 ≤ ij ≤ n, let m = I denote the number of indices and

∂I =
∂

∂xi1 · · · ∂xim
(x− p)I = (xi1 − pi1) · · · (xim − pim)

for any fixed p = (p1, . . . , pn) ∈ Rn. The the kth order Taylor polynomial of
f centered at p is the function

Tk(x) = f(p) +

k∑
m=1

1

m!

∑
|I|=m

∂If(p)(x− p)I .

Theorem 1 (Taylor’s theorem). Let U ⊆ Rn be an open set with a convex subset
W ⊆ U . Fix some p ∈ U and suppose that f ∈ Ck+1(U) for some k ≥ 0. Then
for any x ∈W we have

f(x) = Tk(x) +Rk(x)

where Rk is the kth order remainder term given by

Rk(x) =
1

k!

∑
|I|=k+1

(x− p)I
∫ 1

0
(1− t)k∂If(p+ t(x− p)) dt

In particular for k = 1, the first order Taylor polynomial of f centered at p is
the linear approximation

T1(x) = f(p) +∇f(p)Tx

so in this context Taylor’s theorem says that

f(x) = f(p) +∇f(p)Tx

+

n∑
i,j=1

[
(xi − pi)(xj − pj)

∫ 1

0
(1− t) ∂2f

∂xi∂xj
(p+ t(x− p)) dt

]
.

2 Tangent vectors in Euclidean space
Geometrically speaking, vectors in Rn are visualized as arrows attached to points,
and this really means that we are thinking about a vector attached to a point
p ∈ Rn as living in a copy of Rn with its origin translated to p. More precisely,
this is the space

p× Rn = {(p, v) : v ∈ Rn = Rn
p .

Thus, for instance, a tangent vector to the sphere Sn ⊂ Rn at a point p ∈ Sn

lives in the space Rn
p . Notice that Rn

p really is a vector space with respect to the
operations

(p, v1) + (p, v2) = (p, v1 + v2)

c(p, v) = (p, cv)

for every v1, v2 ∈ Rn and c ∈ R. We will call this the space of geometric tangent
vectors to Rn at p. It’s naturally isomorphic to Rn via the map v 7→ (p, v), and
in particular it has a standard basis {(p, e1), (p, e2), . . . , (p, en)}.
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We recall the following basic notion from calculus. For any (p, v) ∈ Rn
p ,

define the directional derivative at p in the direction of v as the function
Dv

∣∣
p

: C∞(Rn)→ R given by

Dv

∣∣
p
(f) = (Dvf)(p)

= lim
t→0

f(p+ tv)− f(p)

t
.

This operation is linear over R and satisfies the product rule:

(Dvfg)(p) = g(p)(Dvf)(p) + f(p)(Dvg)(p).

Moreover, the directional derivative can be expressed in coordinates as follows:
given v =

∑n
i=1 viei, let g(t) = p+ tv, then we have

(Dvf)(p) = lim
t→0

f(p+ tv)− f(p)

t

=
d

dt

∣∣∣∣
t=0

f(g(t))

=
[
∇f(g(t))g′(t)

] ∣∣
t=0

(by the chain rule)

=
n∑

i=1

vi
∂f

∂xi
(p)

and in particular, (Deif)(p) = (∂f/∂xi)(p), so the directional derivatives along
the standard basis vectors are simply the partial derivatives:

Dei

∣∣
p

=
∂

∂xi

∣∣∣∣
p

for any (p, ei) ∈ Rn
p . Motivated by the directional derivative operators, we make

the following definition. Given a fixed point p ∈ Rn, ω : C∞(Rn)→ R is called a
derivation of C∞(Rn) at p if:

(i) ω is linear over R, and
(ii) ω satisfies the product rule

ω(fg) = f(p)ω(g) + g(p)ω(g).

We let TpRn denote the set of all derivations of C∞(Rn) at p, called the tangent
space to Rn at p. This is clearly a vector space with respect to pointwise function
addition and scalar multiplication:

(ω1 + ω2)(f) = ω1(f) + ω2(f)

(cω)(f) = c(ωf)

for every f ∈ C∞(Rn) and c ∈ R. With this terminology, our preceding discussion
about directional derivatives implies that the set of directional derivative operators
(at p) form a subspace of TpRn. Moreover, we have a linear map

Rn
p → TpRn : (p, v) 7→ Dv

∣∣
p
,

and in fact it’s not hard to see that this map is injective. Indeed, suppose we have
a vector v =

∑n
i=1 viei such that Dv

∣∣
p
is the zero derivation in TpRn. Then for
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any coordinate function xj : Rn → R we use the coordinate expression for the
directional derivative to obtain

0 = (Dvx
j)(p) =

n∑
i=1

vi
∂xj

∂xi
(p) =

n∑
i=1

viδij = vj

and since this holds for each 1 ≤ j ≤ n, we conclude that v = 0. To summarize the
discussion thus far, we’ve constructed an isomorphism of Rn

p with the directional
derivative operators, which are themselves a subspace of TpRn,

Rn
p ' {directional derivatives at p} ⊆ TpRn.

We aim to prove next that the map (p, v) 7→ Dv

∣∣
p
is actually surjective, i.e. that

every derivation is actually a directional derivative (in some direction). This
will establish a three-way equivalence between geometric tangent vectors at p,
directional derivatives at p, and derivations at p. But first we will prove some
useful basic properties of derivations.

Fact 1 (Properties of derivations). Let p ∈ Rn, ω ∈ TpRn, and f, g ∈ C∞(Rn).

(a) If f is constant then ω(f) = 0.

(b) If f(p) = g(p) = 0 then ω(fg) = 0.

(c) Derivations are locally determined: if f and g agree on a neighborhood of p
then ω(f) = ω(g).

Proof. (a) By linearity it suffices to check that ω(f1) = 0 for f1(x) = 1. By the
product rule we have

ω(f1) = ω(f1 · f1) = 2f1(p)ω(f1) = 2ω(f1)

hence ω(f1) = 0.

(b) By the product rule again we have

ω(fg) = f(p)ω(g) + g(p)ω(f) = 0 + 0 = 0

(c) Later we prove this in the more general context of smooth functions on a
smooth manifold M and derivations of C∞(M), see Lemma 2.

Theorem 2. Let p ∈ Rn. The map (p, v) 7→ Dv

∣∣
p
is a linear isomorphism

Rn → TpRn.

Proof. We already know that the map in question is linear and injective, so it
suffices to show that it is surjective. Let ω ∈ TpRn be any derivation of C∞(Rn)
at p – we need to show that ω = Dv

∣∣
p
for some vector v ∈ Rn. Let f ∈ C∞(Rn),

then by Taylor’s theorem we know that

f(x) = f(p) +∇f(p)T (x− p) + Remainder

where we have an explicit integral formula for the remainder,

Remainder =

n∑
i,j=1

[
(xi − pi)(xj − pj)

∫ 1

0
(1− t) ∂2f

∂xi∂xj
(p+ t(x− p)) dt

]
.
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Notice that each term in the remainder is a product of two functions of x which
vanish at x = p, thus by Fact 1 the derivation ω annihilates the remainder part. It
also annihilates the constant term f(p) and thus ω(f) is completely determined
by the first order part,

ω(f) = ω(f(p)) + ω
(
∇f(p)T (x− p)

)
= 0 +

n∑
i=1

∂f

∂xi
(p)ω(xi − pi)

=
n∑

i=1

∂f

∂xi
(p)ω(xi).

Hence we can choose v =
∑n

i=1 ω(xi)ei so that

ω(f) =
n∑

i=1

∂f

∂xi
(p)vi = (Dvf)(p),

which is to say, ω = Dv

∣∣
p
.

As a result of this theorem we have proven the aforementioned three-way
equivalence between geometric tangent vectors at p, directional derivatives at p,
and derivations at p,

Rn
p ' {directional derivatives at p} = TpRn.

In particular, by taking the standard basis {(p, e1), (p, e2), . . . , (p, en)} for Rn
p and

applying the isomorphism of Theorem 2, we obtain a basis {De1

∣∣
p
, De2

∣∣
p
, . . . , Den

∣∣
p
}

for TpRn. As we previously observed, these directional derivatives along standard
basis vectors are just partial derivative operators, so we have the following corollary.

Corollary 1. For any p ∈ Rn, the tangent space TpRn admits a basis of partial
derivative operators, {

∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

}
which means in particular that it has dimension n.

3 Tangent vectors as derivations of smooth func-
tions
Motivated by the definition of the tangent space at a point in Rn as derivations of
C∞(Rn), we will define the tangent spaces to a smooth manifold M as derivations
of C∞(M). Explicitly, given a fixed point p ∈M , a derivation of C∞(M) at p is
a linear map ω : C∞(M)→ R such that

(i) ω is linear over R, and

(ii) ω satisfies the product rule

ω(fg) = g(p)ω(f) + f(p)ω(g)

for every f, g ∈ C∞(M).
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Just as in Section 2, the set of all derivations of C∞(M) at p form a vector space
called the tangent space to M at p, denoted by TpM . Thus, tangent vectors at
p are precisely the derivations at p. Following Lee, we will take this definition of
the tangent space as the primary one, and then construct the other conceptions
of tangent space in terms of this one. In each section we will describe how the
differentials and related constructions can be defined independently of this TpM
definition, in the event that one prefers to take another definition as the starting
point.

The analogue of Fact 1 regarding derivations of C∞(Rn) holds in exactly the
same way in this more general context of derivations of C∞(M).

Fact 2 (Properties of tangent vectors). Let M be a smooth manifold, p ∈ M ,
ω ∈ TpM , and f, g ∈ C∞(M).

(a) If f is constant then ω(f) = 0.

(b) If f(p) = g(p) = 0 then ω(fg) = 0.

(c) Tangent vectors are locally determined: if f and g agree on a neighborhood
of p then ω(f) = ω(g).

Proof. The proofs of (a) and (b) follow exactly the same pattern as in Fact 1, just
by applying the product rule. As for (c), suppose f and g agree on a neighborhood
of p and set h = f − g, so that h is a smooth function vanishing on a neighborhood
of p. Take a smooth bump function η ∈ C∞(M) that is identically equal to 1 on
the support of h and has supp η = M \ {p}. Then the product ηh is identically
equal to h because η = 1 whenever h is nonzero, and since η(p) = h(p) = 0 we
conclude from part (b) that

ω(f − g) = ω(h) = ω(ηh) = 0

for any tangent vector ω ∈ TpM . Hence ω(f) = ω(g) by linearity.

Given a smooth map F : M → N and p ∈M , define the differential of F at p
as the linear map dFp : TpM → TF (p)N given by

dFp(ω)(g) = ω(g ◦ F )

where ω ∈ TpM and g ∈ C∞(N). In particular, the differential of a smooth
function f : M → R at p is the linear map dfp : TpM → R given by

dfp(ω) = ω(f)

for any ω ∈ TpM (here the number ω(f) on the right-hand side is being surrepti-
tiously identified with the linear map R→ R that acts via multiplication by ω(f)).
What does this linear map look like in local coordinates? Take any smooth chart
ϕ : U ⊆M → Rn around p and write ω =

∑n
i=1 ωi

(
∂/∂xi

∣∣
p

)
with respect to this

chart. Then

dfp(ω) = ω(f) =

n∑
i=1

ωi
∂f

∂xi
(p) = ∇f(p)T (ω1, ω2, . . . , ωn)

so in local coordinates the differential dfp is represented by the gradient of f . In
general the differential dFp is represented by the Jacobian matrix of F .
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4 Tangent vectors as derivations of germs
Since the action of tangent vectors on smooth functions is determined locally, i.e.
ω(f) = ω(g) whenever f and g agree near p ∈ M , we may as well consider a
tangent vector ω ∈ TpM as acting on an equivalence class of functions that agree
near p. This idea leads directly to the definition of tangent vectors as derivations
of the space of germs on a smooth manifold. More precisely, fixing a point p ∈M
we consider the set

Sp = {smooth f : U ⊆M → R defined
on an open neighborhood of p}

and define an equivalence relation on Sp by f ∼ g if and only if f and g agree on
a neighborhood of p. Then we call the equivalence class [f ]p of smooth functions
agreeing with f near p the germ of f at p, and the set of equivalence classes is

Sp/∼ = C∞p (M) = space of germs of smooth functions at p

Note that C∞p (M) is indeed a vector space (over R) with respect to the operations

c[f ]p = [cf ]p

[f ]p + [g]p = [f + g]p

and moreover it’s an algebra over R with respect to the product [f ]p · [g]p = [fg]p.
Just as before, a derivation of C∞p (M) is a linear map ω : C∞p (M)→ R satisfying
the product rule

ω[fg]p = g(p)ω[f ]p + f(p)ω[g]p

for every f, g ∈ Sp. Then the tangent space to M at p is the space of derivations of
C∞p (M), which we denote by DpM to distinguish it from the other definitions of
the tangent space. Defining the tangent space as DpM has the benefit of making
the local nature of derivations more explicit, because by definition the derivations
act only on equivalence classes of functions that agree near p. On the downside,
working with equivalence classes of functions is slightly less concrete. Our main
goal in this section, realized by the following theorem, is to prove that TpM and
DpM are isomorphic.

Theorem 3. The map φ : DpM → TpM defined by φ(ω)(f) = ω[f ]p is a linear
isomorphism.

• For any ω ∈ DpM , φ(ω) is a derivation of C∞(M) because linearity and the
product rule both follow directly from the analogous properties of ω.

• φ is linear. If ω1, ω2 ∈ DpM and c ∈ R, then for any f ∈ C∞(M) we have

φ(cω1 + ω2)(f) = (cω1 + ω2)[f ]p

= cω1[f ]p + ω2[f ]p

= cφ(ω1)(f) + φ(ω2)(f)

• φ is injective. If ω ∈ DpM is a derivation such that φ(ω) = 0 ∈ TpM then
by definition we have ω[f ]p = 0 for every f defined in a neighborhood of p,
hence ω = 0 and kerφ = 0.
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• φ is surjective. We need to show that every tangent vector ν ∈ TpM can be
represented by some derivation of germs ω ∈ DpM . Given ν ∈ TpM , simply
define ω ∈ DpM by ω[f ]p = ν(f). Then ω is a well-defined derivation of
germs because [f ]p = [g]p means that f and g agree in some neighborhood
of p, which implies that ν(f) = ν(g) since by Fact 2 the tangent vector ν is
determined locally. Therefore φ(ω) = ν and we conclude that φ is surjective.
There is one additional point that should be clarified. In the equation
ω[f ]p = ν(f), the function f on the left-hand side is a priori only defined in a
neighborhood of p, whereas the tangent vector on the right-hand side acts on
functions defined on all of M . This is easy to fix: simply extend the function
to all of M by multiplying with a suitable bump function, and then apply ν.

Using this definition of the tangent space, it’s straightforward to define the
differential of a smooth map between manifolds in essentially the same way as
before, just replacing functions with germs. Explicitly, given a smooth map
F : M → N and p ∈ M , define the differential of F at p as the linear map
d̃Fp : DpM → DF (p)N given by

d̃Fp(ω)([g]F (p)) = ω[g ◦ F ]p

where ω ∈ DpM and [g]F (p) ∈ C∞F (p)(N). We use the symbol d̃ here to distinguish
this differential from the differential we defined in Section 3 with respect to
the tangent space TpM . In Section 7 we explain the relationship between the
differentials d and d̃.

5 Tangent vectors as equivalence classes of smooth
curves
Given a smooth curve γ : I →M , recall that the tangent vector to γ at time t ∈ I
is the derivation γ′(t) : C∞(M)→ R defined by γ′(t)(f) = (f ◦ γ)′(t).

Here’s the idea: let M be a smooth manifold and fix some p ∈M . A tangent
vector v ∈ TpM should be uniquely determined by all the curves on M passing
through p with velocity vector v at p. We can construct the tangent space in this
way as follows. Consider the set of smooth curves on M which pass through p at
time t = 0,

Γp = {smooth γ : I →M : γ(0) = p}

and define an equivalence relation ∼ on Γp by

γ1 ∼ γ2 ⇐⇒ (f ◦ γ1)′(0) = (f ◦ γ2)′(0)

for every smooth function f : M → R defined in an open neighborhood of p. Note
that f ◦ γ is a function between subsets of R, so we know what its derivative
is without any reference to the differential of a smooth map between manifolds
(hence the definition of VpM is independent of TpM). Let VpM = Γp/∼ denote
the set of equivalence classes of smooth curves with respect to this relation. We
will show that VpM is precisely the tangent space to M at p, but first of all we
need to check that it’s even a vector space. Unlike the previous two definitions
involving derivations, the vector space structure in this case is not obvious.

A natural property that we want the sum [α] + [β] to have is that the velocity
of the resulting curve be the sum of the velocities α′(0) + β′(0), and similarly for
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scalar multiplication. So that’s exactly how we’ll define the operations in VpM :
given α, β ∈ Γp and c ∈ R, define

• [α] + [β] = [γ] where γ ∈ Γp is any smooth curve with γ′(0) = α′(0) + β′(0).

• c[α] = [δ] where δ ∈ Γp is any smooth curve with δ′(0) = cα′(0).

Note that curves γ and δ with these properties can always be constructed by
the existence and uniqueness theorem for ordinary differential equations. These
operations are also well-defined. Suppose γ1, γ2 ∈ Γp satisfy

γ′1(0) = α′(0) + β′(0) = γ′2(0)

then [γ1] = [γ2] because by the chain rule we have

(f ◦ γ1)′(0) = γ′1(0)f = γ′2(0)f = (f ◦ γ2)′(0).

for any f ∈ C∞(M). Similarly, if δ1, δ2 ∈ Γp satisfy

δ′1(0) = cα′(0) = δ′2(0)

then [δ1] = [δ2] because

(f ◦ δ1)′(0) = δ′1(0)f = δ′2(0)f = (f ◦ δ2)′(0)

for any f ∈ C∞(M). Furthermore, it’s easy to check that these operations satisfy
the vector space axioms, and therefore turn VpM into a vector space over R. If
the space VpM is going to capture our intuition for the tangent space as velocity
vectors of smooth curves, we need to know that every tangent vector at p is tangent
to some curve γ at p and that it’s uniquely associated with the class [γ] ∈ VpM .
This is affirmed by the following theorem:

Theorem 4. The map ψ : VpM → TpM given by ψ[γ] = γ′(0) is a linear
isomorphism.

Proof. Let α, β ∈ Γp.

• ψ is well-defined. If [α] = [β] then for any f ∈ C∞(M) we have

α′(0)f = (f ◦ α)′(0) = (f ◦ β)′(0) = β′(0)f

so ψ[α] = α′(0) = β′(0) = ψ[β].

• ψ is linear. For c ∈ R, let γ ∈ Γp be any smooth curve with γ′(0) =
cα′(0) + β′(0). Then we have

ψ(c[α] + [β]) = ψ[γ] = γ′(0) = cα′(0) + β′(0) = cψ[α] + ψ[β].

• ψ is injective. This is the same calculation as the one we made earlier using
the chain rule. We must have [α] = [β] whenever α′(0) = β′(0) because the
differential dfp of any smooth function agrees on these tangent vectors.

• ψ is surjective. This is the only nontrivial aspect of the proof: we must
show that every tangent vector at p is the initial velocity of some smooth
curve passing through p. Let v ∈ TpM , and choose a smooth chart ϕ :
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U ⊆ M → Rn around p with ϕ(p) = 0. The differential is an isomorphism
dϕp : TpM → Rn

0 . With respect to these coordinates we can write

v =

n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

=

n∑
i=1

vidϕ
−1
p

(
Dei

∣∣
0

)
.

By the existence and uniqueness theorem for ordinary differential equations
we can find a smooth curve α = (α1, . . . , αn) : I → Rn which solves the
system of equations 

α′1(0) = v1

α′2(0) = v2
...

α′n(0) = vn

with initial condition α(0) = 0 (valid within some small open neighborhoods
of 0 ∈ I and 0 ∈ Rn). Then (shrinking U if necessary) we get a smooth curve
on M , ϕ−1 ◦ α : I → U ⊆M , which satisfies (ϕ−1 ◦ α)(0) = p and

(ϕ−1 ◦ α)′(0) = dϕ−1p (α′(0))

= dϕ−1p (α′1(0), . . . , α′n(0))

= dϕ−1p (v1, . . . , vn)

=
n∑

i=1

vidϕ
−1
p

(
Dei

∣∣
0

)
=

n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

= v

hence γ = ϕ−1 ◦ α is a smooth curve in a neighborhood of p whose initial
velocity is v; i.e. ψ[γ] = γ′(0) = v.

Thus, if we want to define the tangent space to M at p as the space VpM ,
we can say that the tangent vector to a smooth curve γ ∈ Γp is the equivalence
class [γ] – then by definition the tangent space at p is the space of all of these
tangent vectors. Moreover, it’s easy to define the differential of a smooth map
F : M → N using this definition of the tangent space. Given p ∈M , simply define
d̃Fp : VpM → VF (p)N by setting

d̃Fp[γ] = [F ◦ γ]

for any [γ] ∈ VpM . The benefit of defining the tangent space as VpM is that the
geometric character of the tangent vectors is more obvious, but on the downside it
involves more work in verifying the vector space structure of VpM .

6 Tangent vectors as the dual of cotangent vec-
tors
Usually authors tend to define the tangent space TpM first and then the cotangent
space T ∗pM as the dual of the tangent space, i.e. defining covectors as linear
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functionals on TpM . We can also do things the other way around: first define
the cotangent space T ∗pM and then define tangent vectors as linear functionals
on T ∗pM . Interestingly, this approach seems to reveal the “linear approximation”
aspect of the tangent space more clearly compared to the other approaches.

Take a smooth manifold M and fix a point p ∈ M . Define the following
subspaces of C∞(M):

Ip = {f ∈ C∞(M) : f(p) = 0}
I2p = span{fg : f, g ∈ Ip}

and note that I2p ⊆ Ip ⊆ C∞(M). As the following fact states, the space I2p can
be characterized as the space of functions whose first-order Taylor polynomial
vanishes.

Fact 3. f ∈ I2p if and only if the first-order Taylor polynomial of the coordinate
representation of f in any smooth chart around p vanishes. In other words I2p is
the space of smooth functions that “vanish at first-order”.

Proof. First we’ll prove that any f ∈ I2p vanishes at first-order. We can write
f =

∑
ci(gihi) for some gi, hi ∈ Ip. Take any smooth chart ϕ : U ⊆ M → Rn

centered at p, and let T1(f) denote the Taylor polynomial (centered at ϕ(p) = 0)
of the coordinate representation of f with respect to this chart. By linearity of
the Taylor polynomial it suffices to check that T1(gh) = 0 for any pair g, h ∈ Ip.
By definition of T1, for any x ∈ Rn we have

T1(gh)(x) = g(ϕ−1(0))h(ϕ−1(0)) +∇(gh ◦ ϕ−1)(0)Tx

= g(p)h(p) +
[
h(p)∇(g ◦ ϕ−1)(0)T + g(p)∇(h ◦ ϕ−1)(0)

]T
x

= 0

since g(p) = h(p) = 0, and hence T1(gh) = 0 as desired.
Conversely, suppose that f ∈ C∞(M) vanishes at first-order, we need to show

that f ∈ I2p . By assumption, for any smooth chart ϕ : U ⊆M → Rn centered at p,
the first-order Taylor polynomial of f̃ = f ◦ ϕ−1 (centered at 0) vanishes. Hence

0 = T1(f)(x) = f(p) +∇f̃(0)Tx

which implies that f(p) = 0 and ∇f̃(0) = 0. This latter condition on the gradient
can be expanded to see that

0 = ∇f̃(0)

=

n∑
i=1

∂f̃

∂xi
(0)ei

=

n∑
i=1

dfp
(
dϕ−10

(
Dei

∣∣
0

))
ei

=
n∑

i=1

dfp

(
∂

∂xi

∣∣∣∣
p

)
ei

=

n∑
i=1

∂f

∂xi
(p)ei
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and hence each partial derivative of f vanishes at p, which means that dfp = 0.
Now by Taylor’s theorem, since all of the first order terms vanish, within this
smooth chart we can write

f̃(x) =

n∑
i,j=1

[
xixj

∫ 1

0
(1− t) ∂2f̃

∂xi∂xj
(tx) dt

]
.

Let g̃i = xi and h̃j = xj , and denote by cij the coefficient of g̃ih̃j . With this
notation we’ve expressed f̃ = f ◦ ϕ−1 as

f̃(x) = (f ◦ ϕ−1)(x) =

n∑
i,j=1

cij g̃i(x)h̃j(x)

where each g̃i and h̃j vanish at ϕ(p) = 0. Therefore

f(x) =

n∑
i,j=1

cij g̃i(ϕ(x))h̃j(ϕ(x))

=

n∑
i,j=1

cijgi(x)hi(x)

with gi(p) = g̃i(ϕ(p)) = g̃i(0) = 0 and hj(p) = h̃j(ϕ(p)) = h̃j(0) = 0, i.e.
gi, hj ∈ Ip for every 1 ≤ i, j ≤ n – hence f ∈ I2p as desired.

Consider the linear map θ : Ip → T ∗pM given by θ(f) = dfp. Due to Fact 3, we
know that f ∈ ker θ holds if and only if f ∈ Ip and dfp = 0 both hold; i.e. if and
only if f vanishes to first order. Hence ker θ = I2p and in fact, we will show in the
next theorem that θ is surjective, so that θ induces an isomorphism Ip/I

2
p ' T ∗pM .

Theorem 5. The linear map θ : Ip → T ∗pM given by θ(f) = dfp is surjective, and
ker θ = I2p . Therefore θ induces a linear isomorphism Ip/I

2
p ' T ∗pM .

Proof. The characterization of the kernel of θ follows directly from Fact 3, and
linearity is obvious, so we just need to show that θ is surjective. In other words,
we need to show that any linear functional ξ : TpM → R can be realized as the
differential of a smooth function f : M → R, which means that ξ(ω) = dfp(ω) =
ω(f) for any ω ∈ TpM . This involves a fairly standard argument using bump
functions.

Choose any smooth chart ϕ : U ⊆M → Rn centered at p, with corresponding
coordinate functions xi = x̃i ◦ ϕ : U ⊆ M → R. Let η : U ⊆ M → R be a
smooth bump function which is compactly supported in U and which satisfies
η = 1 identically in some neighborhood of p. Then define f : U ⊆M → R by

f(x) = η(x)ξ

(
n∑

i=1

xi(x)
∂

∂xi

∣∣∣∣
p

)
= η(x)

n∑
i=1

xi(x)ξ

(
∂

∂xi

∣∣∣∣
p

)
.

Then extend f to all of M by setting f(x) = 0 for every x ∈M \ supp η (note that
f(x) = 0 already holds for every x ∈ U \ supp η by definition, so this extension
makes sense). We claim that ξ = dfp. For any ω ∈ TpM , write in local coordinates
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ω =
∑n

i=1 ωi

(
∂/∂xi

∣∣
p

)
for some ωi ∈ R, then

dfp(ω) = ω(f)

= ω

(
η ·

n∑
i=1

xi · ξ

(
∂

∂xi

∣∣∣∣
p

))

=

n∑
i=1

ξ

(
∂

∂xi

∣∣∣∣
p

)
ω(η · xi)

=

n∑
i=1

ξ

(
∂

∂xi

∣∣∣∣
p

)[
η(p)ω(xi) + xi(p)ω(η)

]
(by the product rule)

=
n∑

i=1

ξ

(
∂

∂xi

∣∣∣∣
p

)
ω(xi)

= ξ(ω)

where the second-to-last line follows from the fact that η is constant in a neighbor-
hood of p (so ω annihilates it) and η(p) = 1. Thus we conclude that dfp = ξ and θ
is surjective.

What is the quotient Ip/I2p anyways? If two cosets in this quotient space
coincide, say f + I2p = g + I2p , then their difference f − g ∈ I2p vanishes to first
order. Thus f and g agree at first order, and taking this quotient is the same as
modding out by the relation “f ∼ g if and only if f and g agree at first order”. In
particular, this means that any function f is identified with its first-order linear
approximation T1(f), and so the isomorphism θ realizes cotangent vectors as linear
approximations of smooth functions.

Motivated by Theorem 5, we could conceivably define the cotangent space as
T ∗pM = Ip/I

2
p (independently of TpM) and then define the tangent space as the

dual of the cotangent space, TpM = (Ip/I
2
p )∗. In this case we can first define the

cotangent differential of a smooth map F : M → N at p ∈M as the linear map
d̃F ∗p : T ∗F (p)N → T ∗pM given by

d̃F ∗p [g] = [g ◦ F ]

where g ∈ IF (p)(N) and [g] = g + I2F (p)(N). Then the differential of F at p is the
adjoint of d̃F ∗p , i.e. the linear map d̃Fp : T ∗∗p M → T ∗∗F (p)N given by

d̃Fp(ω)[g] = ω
(
d̃F ∗p [g]

)
= ω[g ◦ F ]

where ω : T ∗pM → R is a linear functional on T ∗pM , g ∈ IF (p)(N) and [g] =
g + I2F (p)(N).

7 The relationship between differentials
In this section we will explain the relationship between the differential dFp :
TpM → TF (p)N (using the definition of tangent space described in Section 3) and
the differentials d̃Fp (using the alternative definitions of tangent space). Actually,
the relationship is very simple and is essentially the same in all three cases. The
three situations we discussed above correspond to the three commutative diagrams:
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Because of this common pattern, all of these definitions are kind of “naturally
equivalent” in the sense that the differentials factor through the corresponding
isomorphism between any two tangent spaces.

Case 1: d̃Fp acting on derivations of germs. Recall that for any derivation of germs
ν ∈ DpM and for any smooth function f ∈ C∞(M), we have φ(ν)(f) = ν[f ]p.
Thus for each g ∈ C∞(N),

dFp(φ(ν))(g) = φ(ν)(g ◦ F )

= ν([g ◦ F ]p)

= d̃Fp(ν)([g]F (p))

= φ(d̃Fp(ν))(g)

so dFp ◦ φ = φ ◦ d̃Fp as claimed.

Case 2: d̃Fp acting on equivalence classes of smooth curves. Recall that for any
[γ] ∈ VpM we have ψ[γ] = γ′(0), hence for any g ∈ C∞(N) it follows that

dFp(ψ[γ])(g) = dFp(γ
′(0)(f)

= γ′(0)(f ◦ F )

= (f ◦ F ◦ γ)′(0)

and on the other hand,

ψ(d̃Fp[γ])(f) = ψ([F ◦ γ])(f)

= (F ◦ γ)′(0)(f)

= (f ◦ F ◦ γ)′(0)

so dFp ◦ ψ = ψ ◦ d̃Fp as claimed.

Case 3: d̃Fp acting on linear functionals. Tedious to write down, but similar to
the above two cases.

8 References
In this note we mostly followed John Lee’s Intro to Smooth Manifolds (pp. 50 -
75), filling in details to several exercises and problems along the way.
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