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1. Introduction

Broadly speaking, gauge theory is the study of connections on principal bundles. Given
a Lagrangian on a principal bundle, one obtains an Euler-Lagrange operator, then one
can define special connections associated with the variational problem (critical points of
the action functional). Starting with this idea, there are a wide variety of directions one
could pursue. See for instance [AJ78, DK97, CVB03, H17]. Let us briefly outline two
distinct but interrelated directions of gauge theory:

1. Field theory: gauge theory provides a common mathematical framework for de-
scribing various field theories arising in physics. For example, electromagnetism,
gravitation, quantum field theory, etc. In this context, fields are sections of configu-
ration bundles associated to a given principal bundle, the potentials correspond to
connections, and the field strength is the curvature of the connection. Conservation



laws are then understood as consequences of Noether’s theorem, arising from gauge
symmetries of the action functional. The aim of gauge-theoretic field theory is to
identify natural geometric structures (bundles, connections, metrics, Lagrangians)
whose critical points reproduce the fundamental equations of physics.

2. Smooth invariants: Distinguishing smooth structures on 4-manifolds is difficult.
Topological invariants like Betti numbers or Euler characteristic are not sufficient.
In order to obtain an interesting invariant of the smooth structure, the general
idea is to fix some additional geometric structure, for example a principal bundle
with connection, then write down a non-linear PDE from that structure, and then
study the topology of the moduli space of solutions. If one is lucky, this does not
depend on the additional choices made, only on the smooth structure. There are
many examples of this procedure, including Donaldson’s Yang-Mills invariants,
Seiberg-Witten theory, Bauer-Furuta theory, etc.

In this note, we will focus on pursuing the first direction. In addition to being
interesting and useful in its own right, it turns out that the first direction is useful for
the second. Although we will focus on the mathematics, it is instructive and interesting
to relate the physical motivation associated with the mathematical formalism, so we will
frequently do so. For example, in the U(1) case the Yang-Mills equations reduce to the
vacuum Maxwell’s equation governing electromagnetic fields. Our primary references
are [DK97, NS96, T94, CVBO03, H17]. We will fill in certain details along the way that
are often left out of the literature, and summarize some of the main themes.

1.1. Preliminaries. In this section we introduce our notation and conventions, and
the basic objects we will be working with.

Throughout this note we will consider G-principal bundles mp : P — X with
structure group a real Lie group G, dim G > 0. By definition, P — X is a fiber bundle
equipped with a free transitive right G-action on P, and equipped with a bundle atlas
{(Ua,4)} whose trivialization morphisms

Yl apt (Uy) — Uy x G

«

are G-equivariant in the sense that

(pry o v (pg) = (pryo ) (p)g

for every g € G and p € 7' (U,). Owing to to this property, every trivialization
morphism 1, determines a unique local section z, : U, — P such that

Pry 09 0 zq = 1,
where 1 is the unit element of G. The transformation rules for z, are given by

23(2) = zo(T)pap(z), =€ Uy NUp, (1.1)



where p,s(z, g) = pas(z)g are the transition functions for the bundle atlas of P. Con-
versely, the family {(U,, z4)} of local sections of P obeying (1.1) uniquely determines a
bundle atlas for P. Note that there is a pull-back operation on the principal bundle
structure: the pull-back f*P of a principal bundle is also a principal bundle within the
same structure group.

Let G be a Lie group. For g € G we let L, and R, denote the left and right
multiplication automorphisms. We let g; denote the left Lie algebra of GG, consisting
of left-invariant vector fields on G. We will let {e,,} denote a basis for g;, and let c*
denote the structure constants, so that

[€m, €n] = ¥ ep.
As usual, there is a natural isomorphism of g; with the tangent space TG given by
assocating any v € T1G with the left-invariant vector field g — L,v on G. Of course,
one may also consider the right Lie algebra g,.

The left action L, of a Lie group G on itself defines its adjoint representation g — Ad,
acting on the right Lie algebra g,, and its identity representation acting on the left Lie
algebra g;. Consequently we have the adjoint representation

ade 1 gr — 9r
ade(€) = [¢, €]

of the right Lie algebra g, on itself.
Any left action G x Z — Z of a Lie group G on a manifold Z yields a homomorphism

g = T(2)
€ — &

into the Lie algebra 7 (Z) of vector fields on Z. The homomorphism is defined by the
relation

§Adg(e) = dg © ge og_l'

Given a basis {¢,, } for g,, the vector fields &, are called the generators of a representation
of the Lie group G on Z. Let g* = TG be the vector space dual of the tangent space
T1G, i.e. the dual Lie algbera. It is provided with the basis {€”} dual to the basis
{€m} for T'G. The group G and the right Lie algebra g, act on g* by the coadjoint
representation

ad! (€") = —c.€".

A differential form ¢ on the Lie group G is said to be left-invariant if Ly = ¢.
The exterior derivative of a left-invariant form is again left-invariant. In particular, the
left-invariant 1-forms satsify the Cartan equations

do(c, ) = —%qﬁ([e,e']), cécan



We have a canonical g;-valued left-invariant 1-form
0 :T'G — g1, Oi(e) = ¢

on the Lie group G. With respect to the decomposition §; = 6;"¢,,, the coefficients ;"
make up the basis for the space of left-invariant exterior 1-forms on G-

Ema 0] =9,,.
The Cartan equations, written with respect to this basis, read
m 1 m nn k

Analogous statements hold when one replaces “left” with “right”.
The canonical action of G on P on the right defines the canonical trivial vertical
splitting
a:VP S Pxg

such that a~!(e,,) are the familiar fundamental vector fields on P corresponding to the
basis elements ¢, of the Lie algebra g;.

Taking the quotient of the tangent bundle TP — P and the vertical tangent bundle
VP — P by dRg (or by G) yields the vector bundles

TeP = (TP)/G — X and VgP =VP/G — X.

The fibers of T¢ P encode both vertical directions (isomorphic to g;) and the projec-
tion onto horizontal directions. The natural projection TP — T (X) is given by
differentiating the bundle projection P — X.

Sections of TP — X are G-invariant vector fields on P, and sections of Vo P — X
are G-invariant vertical vector fields on P. Hence, the typical fiber of VP — X is the
right Lie algebra g, of the right-invariant vector fields on the group G. The group G
acts on this typical fiber by the adjoint representation.

The Lie bracket of G-invariant vector fields on P descends to the quotient by G and
defines the Lie bracket of sections of the vector bundles To P — X and VgP — X. It
follows that Vo P — X is a Lie algebra bundle (called the gauge algebra bundle) whose
fibers are Lie algebras isomorphic to the right Lie algebra g, of G.

Given a local trivialization of P, there are corresponding local bundle trivializations
of TP and Vi P. Given the basis {e,} for g,, we obtain the local fibers {0, ¢,} for
TeP — X and {e,} for Vo P. If we look at sections

§= an)\ +&Pep, M= 77“(% + e,
of TP — X, then we see that the coordinate expression of their bracket is

(€, ) = (€"0.m — 1"0,60)0x + (203" — N E™ + ) £ )e,. (1.2)



Given fiber bundles 71 : Y7 — X and 7y : Yo — X, their fibered product is defined as
the pullback bundle

Y1 xx Yy = Wsz = 735/1 = {(yhy2) : 7r1(y1) = 7T2(?J2)}

which is of course another fiber bundle over X.

Let my : TY — Y be the tangent bundle of a fiber bundle 7 : ¥ — X. Given
local coordinates (z*, %) on Y, the tangent bundle T'Y is equipped with the holonomic
coordinates (2, y% i*,4"). The tangent bundle TY — Y has the vertical subbundle
VY = Kerdnr, consisting of the vectors tangent to the fibers of Y. The vertical tangent
bundle VY is provided with the holonomic coordinates (z*, %, ) with respect to the
frames {0;}. The vertical cotangent bundle V*Y — Y of the fiber bundle Y — X is
defined as the vector bundle dual of the vertical tangent bundle VY — Y.

A vector field v on a fiber bundle Y 5 X is said to be projectable if it projects over
a vector field 7 on X, i.e., if it satisfies 7 o m = dm o u. A projectable vector field has
the coordinate expression

u = uM(z")O\ +u' (2", )0, T = utOy.

A projectable vector field u = u‘9; on a fiber bundle Y — X is said to be vertical if it
projects over the zero vector field 7 =0 on X.

A vector field 7 = 720, on the base X can give rise to a projectable vector field on
the total space Y by means of some connection on this fiber bundle. Nevertheless, any
vector field 7 on X admits a canonical lift to any tensor bundle, which we will denote
by 7. In particular, the lift of 7 onto the tangent bundle is given by

~ as v 9
T :T”au—i—ayT T % (13)

and the lift of 7 onto the cotangent bundle is given by

0

5 (1.4)

T =110, — 07’1,
The Lie derivative of an exterior form ¢ along a vector field u is denoted by
L.¢ =wusdp+ d(uso).

Given the tangent lift 5 of an exterior form ¢, we note that

Given a differential form w, we will use the notation

Wy — a)\_l W, Wpx = 8M_| 8,\_| Ww.



1.2. Jet manifolds. The order-k jet manifold J*Y of a fiber bundle Y — X consists
of the equivalence classes js, * € X, of sections s of Y, identified by the first k + 1
terms of their Taylor series at the points z € X. The jet manifold J*Y is provided with
the adapted coordinates

(IA7 yia yg\u s 7y§\k,---)\1)7 yg\l---)\l (jl;8> - 8)\1 U a)\lSi(I),

for 0 <[ <k.
We will use the following notation for operators on exterior forms on jet manifolds.
The total derivative operator is defined by

For instance, dy(dz*) = 0 and dy(dy},...,,) = dy}y,...»,- The horizontal projection hy is
defined in local coordinates by

ho(dy') = y,dz",  ho(dyy) = yadat,
and similarly for the higher order jet manifolds. The horizontal differential is defined by
di¢ = dax* A dy(9).
The total derivative satisfies the graded Leibniz rule
da(p N o) =dr(p) No+ o Adr(o), dyod=dod,,
while the horizontal differential satisfies

dHOdHIO, hOOdIdHOhO.

2. Principal connections

Let J'P denote the first jet manifold of a G-principal bundle P — X. Since J'P — P
is an affine bundle modeled over the vector bundle

T*"X@VP — P,

we can pass to the quotient by the jet prolongation J' R of the canonical right G-action
on P. This yields the affine bundle

cC=J 1P/ G— X,
modeled over the associated vector bundle

C=T"X®VaP — X,



so that there is a canonical vertical splitting
VC~CxxC.

It follows that J'P — C is itself a principal G-bundle, canonically isomorphic to the
pullback
J'P~P;=CxxP—C.

Now recall that the G-invariant exact sequence
0 — VegP =TaP —TX —0 (2.1)

arises by taking the quotient of the standard short exact sequence 0 - VP — TP —
7T X — 0 with respect to the G-action. A principal connection on P — X is defined
as a section

A:P— J'P

which is G-equivariant in the sense that
J'R,0 A= AoR, (2.2)

for any g € G. Such a section determines a splitting of the exact sequence (2.1). In
local coordinates, a principal connection is represented by a T P-valued 1-form

A X — T X @TLP,
A=da*® (0)+ Ale,), (2.3)

where e, is a local basis of VP and Aj are local smooth functions on X.

Condition (2.2) ensures that principal connections on P — X are in one-to-one
correspondence with global sections of the affine bundle C' — X. Since affine bundles
always admit global sections, every principal bundle admits a principal connection.

For this reason, C' = J'P/G — X is called the bundle of principal connections on
P. Given a local trivialization of P, the associated bundle coordinates (z*,a%) on C
identify a section A with local functions A} = af o A, which are precisely the coefficients
of the connection form (2.3). In gauge theory, these coefficients are interpreted as gauge
potentials, and we therefore refer to sections A : X — C' as gauge potentials.

Suppose a principal connection on P — X is represented by the vertical-valued
1-form

A= (dy' — A% d2) ® 0,

where y' denote local fiber coordinates on P and 9; span the vertical tangent bundle
V P. This form encodes the splitting of T'P into horizontal and vertical subspaces: the
terms dy’ — Aidz* vanish on horizontal vectors, while the coefficients A} record how
the horizontal lift depends on the base coordinates. Composing A with the natural
isomorphism « : VP ~ P x g;, we obtain the familiar Lie algebra—valued connection



1-form
A: PS5 TP, VP U2 ' Py,

Thus A is the g;-valued 1-form on P that annihilates horizontal vectors and restricts to
the Maurer—Cartan form on vertical directions.

With respect to a local trivialization (Ue, z¢) of P, the connection form has the local
expression

A= V(6 — Al da* ® €) (2.4)

where 6, is the canonical left-invariant g;-valued 1-form on G, {¢,} is a basis of g;, and
the coefficients Zi are smooth functions on P satisfying the equivariance condition

AL (pg)(eq) = ad(g™") (AN(p)(ey)) -

By defining local functions on X via A§ = ZZ\ o z¢ over Ug, we recover the usual local
connection 1-form

A = —Aldr* @ e, = Alda* ® ¢, (2.5)

which is just the pull-back ZZZ of the connection 1-form A over Uc. Note that these
coefficients agree with those appearing in the expression (2.3) for the splitting of T P.
It is important to note that, by virture of the natural identification Vo P ~ P X g;, the
coefficients A} admit two interpretations:

e In (2.3) they occur in the Vi P-valued 1-form
Aldr* ®e, € QHX) @ VG P,
where {e,} denotes the basis of Vg P induced from {¢,};

e In (2.5) they appear in the g;-valued local connection 1-form.

Principal connections behave well under morphisms of bundles. We record two basic
functorial properties.

Fact 2.1 (Pullback). Let P — X be a principal G-bundle and f : Y — X a smooth
map. Then the pullback f*P — Y is again a principal G-bundle, and the canonical
morphism fp: f*P — P allows one to pull back a connection A on P to a connection
f*A on f*P. Concretely, the horizontal distribution of f*A is defined as the preimage
under dfp of the horizontal distribution of A.

Fact 2.2 (Pushforward). Let P' — X and P — X be principal bundles with structure
groups G' and G, respectively, and let ® : P' — P be a principal bundle morphism
covering Idx and corresponding to a homomorphism G' — G. If A’ is a principal
connection on P’, then there exists a unique principal connection A on P such that
d® maps horizontal subspaces of A" onto those of A. In this way, ® pushes forward
connections from P’ to P.



2.1. Curvature. The curvature of a principal connection A (also called the field
strength) is defined as the Vi P-valued 2-form on X,

Fu:X — A2T*X @ Vo P,
Fp=1 Fy, da* A dat @ e, (2.6)

2

In local coordinates, the coefficients are computed from the commutator of horizontal
lifts:

Fy, = [0x + Aey, 0, + Aley]” = WA, — 0,45 + ¢, ALAY (2.7)
where ¢, are the structure constants of g;. Equivalently, if we regard the local connection
form as the Vg P-valued 1-form

A= Aldr* ®e,,
then the curvature takes the familiar shape
Fa=dA+ANA,

with the wedge product understood using the Lie bracket on Vg P. It is important to
distinguish F'4 from two related notions:

1. Curvature of affine connections: for a connection on a vector bundle, the curvature
is a 2-form with values in End(F). Here, F4 is not an endomorphism-valued form
but rather a section of A>T* X @ V5 P, reflecting the fact that a principal connection
splits the sequence (2.1) and its curvature measures the non-integrability of the
corresponding horizontal distribution.

2. Lie algebra—valued curvature form: composing with the natural isomorphism
a:VeP S P xg g; gives the g;-valued curvature 2-form on P

Q=dA+ LA A e TPy,

where A is the connection 1-form (2.4) on P. These two curvatures are related by
the rule

Z;Q = — ¢<(FA)
on any local trivialization (U, 1¢).

In practice, one often passes to the local g;-valued 2-form
be(Fa) = dAc + 5[Ac, A,

where A, = A% dz* @ ¢, is the local connection 1-form (2.5). This form has the same
component expression as (2.6), but written with respect to the Lie algebra basis {¢,}
instead of the induced vertical basis {e,}. Thus the curvature can be viewed either as a
Vg P-valued 2-form on X or, after trivialization, as the familiar g;-valued field strength.
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2.2. Associated bundles. Let Y = (P x V)/G — X be the fiber bundle associated
with the principal G-bundle P — X, where G acts on the typical fiber V' on the left.
We call such a bundle a P-associated bundle. By definition, the quotient is formed by
identifying

(p,v) ~ (pg, g~ 'v), pePgeGuel.

For each p € P, the map

]2V = Yo, [pl(v) = (p,v) - G,

is a linear isomorphism onto the fiber over 7(p) € X, and satisfies the compatibility
condition

[pl(v) = [pgl(g~v).

Every principal connection on P — X canonically induces a connection on any P-
associated bundle Y. Indeed, given a connection A on P with horizontal distribution
H C TP, the differential of the projection

PxV — (PxV)/G=Y
sends H x V' to a horizontal distribution in 7Y, thereby defining a connection on Y — X.

We will call this induced connection the associated connection.

If Y is in fact a vector bundle associated to a representation p : G — Aut(V), then
the induced connection admits the local form

A=d* @ (0h - AL D)),

where {/,} are the infinitesimal generators of the representation dp : g — End(V).
Explicitly, if {¢,} is a basis of g;, then I, = dp(e,) describes how ¢, acts on V. These
matrices encode the geometric action of the structure group on the fiber. In this case,
the curvature of this associated connection reads

F=—3F, 1) da* A dat © 8,

with the same local coefficients F, as in (2.6).

In particular, applying this construction to the adjoint representation of G yields
the gauge algebra bundle
VaP ~ P xXg g — X.

The induced connection on Vi P is a linear connection, whose covariant differential of a

section £ = &Pe,, is

VA X 5 T*X @ Vi P,
VAE = (OE" + ) AR £9) dz’ @ e,. (2.8)
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For a vector field v on X, the covariant derivative takes the form
V& =usVA¢ = [us A ¢,
where A is the T P-valued 1-form (2.3). In particular,
V?Aeq = ¢ A%er.

Finally, this covariant derivative is compatible with the Lie bracket on sections of V5P,
in the sense that

Vil&En] =[ViE n]+ € Vinl,

for any vector field u and sections &, of Vg P — X.

2.3. The Nijenhuis differential. Given a smooth manifold M, let O"(M) denote
the space of differential r-forms on M. The direct sum

O(M) =P o7 (M)

r>0

is the Z-graded exterior algebra with respect to the wedge product A. The exterior
differential acts by

d:O"(M)— O™ (M),
1

dp = — uxn, A2 N dzM A - AN d2
T

The space of tangent-valued forms O*(M) ® T (M) carries a natural graded Lie bracket,
the Frolicher—Nijenhuis bracket (FN bracket), which extends the Lie bracket of vector
fields:

[ ]pn O (M) @ T (M) x O (M) @ T (M) — O™ (M) @ T (M) (2.9)
which is determined on decomposable elements by

[a®@u, fRv|py = (@A B) @ [u,v] + (e AL,S) @ v — (LyaAB) @u
+ (=) (daANusf)@v+ (1) (vaoa ANdS) ® u,

for a € O"(M), p € O°5(M) and u,v € T(M). For r = s = 0 this reduces to the usual
Lie bracket of vector fields.

Now let P — X be a principal G-bundle. The FN bracket on O*(P) @ T (P)
is G-equivariant with respect to the canonical right action Rg, meaning that [-,-]ry
commutes with the pullback action of R, for all g € G. Consequently, it descends to an
induced FN bracket on the associated bundle TP = (TP)/G — X.

Let A € O'(X) ® TgP be the local connection form of a principal connection, as
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in (2.5). The associated Nijenhuis differential is defined by

dy: O"(X)QTeP — O™ (X)) ® VP,
dACb = [Au ¢]FN7 (2’1())

for ¢ € O"(X) ® TeP. On the vertical subbundle Vi P, this reduces to the covariant
differential V4 introduced earlier in (2.8), i.e.

daé = VA, € eT(VeP).
Equivalently, in local form,
VA = de + A, €],

where A is the vertical connection 1-form (2.3).
For decomposable elements ¢ = a ® ¢ with o € O"(X) and £ € Vg P, one obtains
the graded Leibniz rule

dala® &) =da®&+ (1) a A VA,

and the extension to general tensors follows by linearity.

Finally, the curvature of A can be expressed in terms of d4 and the FN bracket as
Fo=1dsA+ LA Alpy € O*(X) @ VG P. (2.11)

This coincides with the usual definition Fy = dA+ 3[A, A] when restricted to the vertical
part.

2.4. The bundle of principal connections. We now turn to vector fields and
connections on the bundle of principal connections C' = J!P/G — X which parametrizes
all principal connections on P — X. In particular, we will define a canonical connection
on the pullback G-principal bundle Po = C xx P — C.

Let J'P be the first jet bundle of P, with adapted coordinates (z*,y’,4%). There is
a canonical bundle morphism

0:J'PxpTP — VP,

which assigns to a tangent vector its vertical component relative to a chosen 1-jet of P.
Passing to the quotient by G, this descends to a bundle morphism over X

QZCXXTGp—>VGP,
0(0x) = —aley, 0(ep) = €, (2.12)
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where the coordinates a) describe a connection in C. Moreover, since
Vao(C xx P)=C xx VgP, To(C xx P)=TC xx TgP,
the Atiyah exact sequence for the pullback bundle Po — C' takes the form
0 —CxxVagP—=TC xxTaP — TC — 0. (2.13)

The morphism (2.12) provides a canonical splitting of this exact sequence: it projects
tangent vectors in T'C' X x Tz P onto their vertical component in C' x x Vo P, and thereby
determines a complementary horizontal subspace.

Explicitly, this yields a horizontal splitting
TC xx TgP — C xx TgP — C xx Vg P,
and hence a canonical (but generally non-flat) principal connection
A€ DN 0)@Te(C xx P)
on Po — C, given in local form by

.AZTC—)TOXXTgp,
A =dz* @ (0x + die,) + da, ® 02

Thus Pg is canonically equipped with the connection A.
Consequently, the vector bundle C'x x VP — C inherits a canonical linear connection
with associated covariant differential given by
haVie, = die,, N VAe, = 0. (2.14)

By definition (2.11), the curvature 2-form F4 € O?(C) ® Vg P is

FA:%dA.A-i—%[.A,A]FN

= <da2 A dat + 1cb akalda® A da:”) ® e, (2.15)

We note the following: if A: X — C is a principal connection on P — X, then the
curvature of A is exactly the pullback Fy = A*Fy4.

Example 2.3 (Trivial principal bundle). Let P = X x R — X be the trivial principal
bundle with abelian structure group (R, +). Then C' = T*X — X is the affine cotangent
bundle, and principal connections on P correspond exactly to 1-forms on X.

Choose local coordinates (z*) on X and (y°) on the fiber. Then J'P has local
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coordinates (2%, %%, "), and the right action by t € R is
(z,y,3") -t = (z,y +t,3).
Hence the G-invariants are (2, 4?), so
C=J'P/G={(z* ax)}, ay = .
Identifying C' with T*X via

UV:C—->T'X

U(z,a) = (x, &) = ay),
then the tautological 1-form on T* X, 4y dz?, pulls back to

U™ (&y de?) = ay da?.

On J'P x p TP the canonical morphism 6 takes the vertical part of a tangent vector
relative to a chosen 1-jet. In coordinates we have
0(0y) = —i*09,,  0(9,) =0,
Taking the quotient by G and using ay = 4* yields
0(0\) = —aye, O(e) = e,

where e is the class of 9, in Vg P ~ X x R, in agreement with (2.12).

Take the local coordinates (z?, a,;y) on Po = C xx P. Using 6 to project vertical
parts defines the horizontal lifts

(a)\)H = 6& + ay e, (8“)H = 8“ = i

~ Oa,’
Hence the canonical principal connection A € O'(C) @ Tg(C xx P) is
A =dz* @ (0x + axe) + da, @ O
with vertical component (projection to Vg P) given by the universal potential

Aean = ardz* @ e = U0 @ e.

Now we will compute the Nijenhuis differential d4 and the curvature F4. Since G is
abelian, the structure constants vanish and ad = 0. From (2.8) (with ¢, = 0) we get
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V4e = 0, and therefore for any scalar form f,

da(fe)=df @e.

Moreover [Acan, Acan] v = 0. Thus the curvature (2.15) becomes

Fi4=dgAem = d(aydz®) @ e = (day Ndz*) @ e
—dizNdx*@e=df Qe.

Under the identification C' ~ T* X this is precisely the canonical symplectic form df.
We can relate the connection to the Lie-algebra valued form. Composing with
a:VeP — g~ R, ale) = ¢, the gi-valued connection on Pg is
A =dy — aydz?, Q4 =dA = —day Ada?.
Pulling back by the identity section s : C' — P, s(z,a) = (z,a;0), gives

sS*A=—ayda = — U0, s Q= —db,

so that a(F4) = — €4, consistent with the general sign relation discussed earlier.

To summarize, we have:

6 = &, dx’,
ds =d,
Fa=diyANde* =db e N>°T*X.

Thus A reproduces the tautological 1-form # on T*X, and its curvature F4 is the
canonical symplectic form df. This example illustrates that the bundle C' — X in a
sense generalizes the cotangent bundle: just as 7% X carries a canonical symplectic 2-form
df, the bundle of principal connections carries the canonical Vi P-valued 2-form (2.15).
In particular, for a vector field v on X, the canonical lift w to T*X is determined by

Uadd = d(usb).

In gauge theory this equation is generalized by means of the canonical curvature Fi4. <

Let £ = 720\ + £Pe, be a section of the fiber bundle TP — X which projects onto a
vector field 7 on X. One can think of ¢ as being a generator of a 1-parameter group of
general gauge transformations of the principal bundle P — X. Using (2.12) we obtain a
morphism over X

£10:C — VgP

which may be regarded as a section of Vi (C' x x P) — C. Then the equation

§oaFa=da(€00)
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uniquely determines a vector field £ on C which also projects to 7. Let us expand this

relation in coordinates. Write
o = 720\ + uf\aﬁ‘

for some coeflicients u} to be determined. Contracting F4 from (2.15) with & gives

§caFy = (T'udCLL + uy dxt + c;qaﬁT“dx’\ag\) ® er.

On the other hand,
da(620) = (ONE™ + ¢ ahe? — al,OhT") da’ @ e,
Equating coefficients yields
uy = OrE" 4, a38T — a O\T",
and therefore

Eo =70y +ub0), with

uy = OhE" + cp,ah&? — ajONTH. (2.16)
The vector field &¢ is the generator of the associated gauge transformations of the bundle
of principal connections C. In the special case £ € Vg P (i.e. 7 =0), this reduces to the

vertical vector field
£C = uf\a;\, ug = 8)\fr + c;qa’)’\fq.

Since VO =C xx T*X ® VgP C TC, we can equivalently write
Ee=V4% . C = VC.

Example 2.4. Let A be a principal connection on P — X. For any vector field 7 on
X, consider the section

E=11A: X = TP,
£ =120\ + AlTe,.

The construction above yields the induced vector field (2.16) on C,

Ta=T1"0\+ulo),
T o__ T T P T T
uy = AT + ¢ X ALT! — (a;, — A7 )O\TH.
This example shows that, once a background principal connection A is chosen, vector

fields on X induce induce vector fields on the bundle of connections C in a natural
way. o

Returning to the curvature F4, we note that it can be viewed in a slightly different
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way. Namely, there is a canonical horizontal Vg P-valued 2-form on J'C,

F = %f’:\"udas’\/\dx"@er,

q

T __ T T T P
= W a#A+Cpquau’

AaP af\u) are adapted coordinates on J'C. Now, for any principal connection

where (2%, ab,

A: X = C,welet J'A: X — J'C denote the first jet prolongation, i.e., J'A(z) = j1A
is the 1-jet of A at x. Evaluating F on this jet recovers the horizontal part of the
curvature of A:

FoJ'A=ho(Fa),

i.e. the components F73 ,( jLA) are exactly the components of F4 expressed as a horizontal
2-form on X. Moreover, note that the map

g S JIC — O xx N*T*X @ Vg P

is an affine surjection over C. To see this: J'C' — (' is an affine bundle modeled on
the vector bundle 7*X ®¢ VC, and in coordinates the dependence of Fy, on the fiber
coordinates a}, is affine (indeed linear) and the remaining terms ¢, ayaf, depend only
on the base coordinates (z*,a%) on C. Hence, for fixed (z,a) € C the map

(ah,) — F,

is an affine map from the fiber J'C|, onto the space A*T*X ® Vg P,. In fact, this map is
an affine surjection, because the antisymmetric part of the a} -variables may be chosen
arbitrarily to realize any target 2-form. Thus F/2 is an affine surjection over C.

Therefore the kernel C, = Ker F is an affine subbundle of J'C' — C, and we obtain
a canonical splitting over C"

JIC=0C,0C_=0C,d(Cxx N°T*X @ VgP). (2.17)
The corresponding projections are pr, = F/2, and pr; = S given by
pr, =8:J'C = C,
f = 50 + 0l — chyaal),

which extracts the symmetric (in A, i) part corrected by the quadratic term. Finally, if
I': C — J'C is a connection on the bundle of principal connections C' — X, then SoT
is a C'y-valued connection on C' — X, meaning it satisfies the condition F(SoI') =0.
Writing this condition out in local coordinates yields

u((SoD)(z) = (Sol);, — (Sol)\ +cp,akal = 0. (2.18)

In words: the antisymmetric part of the second-order jet coordinates of Sol” is determined
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by the quadratic term —c;qa’;az, ensuring that S o I' takes values in the kernel of F.

3. Gauge conservation laws

Conservation laws in the gauge theory of principal connections exhibit the following
fundamental features.

e In general, Noether conservation laws and Noether currents depend on gauge
parameters, but this is not the case in an abelian gauge model (principal bundle
with abelian structure group).

e Noether currents reduce to superpotentials because generators of gauge transfor-
mations depend on derivatives of gauge parameters.

e An energy-momentum conservation law implies the gauge invariance of a La-
grangian.

3.1. Lagrangian field theory. We will discuss Lagrangians, Euler-Lagrange operators,
and conserved currents, following [T94, NS96, CVB03, H17|. The Lagrangian plays an
important role for several reasons:

e The Euler-Lagrange operator £, associated with a Lagrangian L governs the field
equations (its kernel defines solutions).

e Symmetry currents are obtained from invariance properties of L.

e Conservation laws arise when symmetry currents interact with the Euler-Lagrange
equations.

We follow the geometric formulation [CVBO03| of classical field theory, where fields are
represented by sections of a configuration bundle. For example, matter fields, gauge
fields, gravitational fields all fit into this framework. We do not specify the type of
fields, instead using y* to denote all of them. The finite-dimensional configuration space
of fields is the first order jet manifold J'Y of Y — X with coordinates (z*, 4%, 3%), cf.
[CVBO03].

A first-order Lagrangian is defined as a horizontal density on J'Y,

L:JY = A"T*X
L=CL(y yw  w=dr' A--- Ada"

where n = dim X. The function £(2*,y’,4%) is any smooth real-valued function on the
first jet manifold J'Y. By definition £ depends only on (z*, ¢, %), and not any higher
jets. The associated Lagrangian is the horizontal n-form

L=Luw, w=dz"' A Ada".

In applications one often imposes further conditions on £, such as:
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e [nvariance: £ may be required to be covariant under diffeomorphisms of X or
gauge transformations of Y.

e Regularity: non-degeneracy of the Hessian

9L
Y30y,

is often important, especially in the context of Hamiltonian gauge theory.

Let u = uMz,y)0) + u'(z,y)0; be a projectable vector field on Y — X. Its
prolongation to the jet bundle is

J'w = w0y + u'0; + (dyu' — yi@,\u“)ai’\.
The Lie derivative of L along J'u is then
Ly, L = |0’ £+ (v 0y + u'0; + (dau’ — yiaku“)ﬁf)ﬁ w. (3.1)

The first variational formula provides a canonical decomposition of this Lie derivative,
separating the Euler-Lagrange term from a horizontally exact term:

LJluL = Uuy4d gL + dHh()(U_l HL)
= (u' =yl u")(8; — d\OMLw — dy [W;\(u“yi —u') — v L]w (3.2)

where uy = (u16)0; is the vertical part of u relative to the canonical splitting
urOy 4+ u'0; = uM (O + y40;) + (u' — utyl)o;.

Recall that we defined the operators dy, ho, and dy around (1.5).
The Euler-Lagrange operator associated to L is

EL: J?Y = TY NA"T*X,
5L = (81[, - d)\ﬂ';\) 91 A\ W, (33)
where we set 7 = 9} L for brevity. The associated Poincaré-Cartan form is
Hp:JY - TY NANVITHX,
Hp = L+ 70" Awy = midy’ Awy + (£ — myh )w. (3.4)
Here wy = 0y_w is the contraction of w with 0.

Remark 3.1 (Notation). The shorthand 7 = 9}£ denotes the partial derivative of
the Lagrangian function £ with respect to the jet coordinate yi. Thus, 7' are the
generalized momenta conjugate to the field components y’, and they play a central role
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both in the Euler-Lagrange operator (3.3) and in the definition of the Poincaré—Cartan
form (3.4). o

3.2. Conservation laws. The kernel of the Euler-Lagrange operator £, is defined in
local coordinates by the relations

(05 — d\OML = 0. (3.5)

These equations define the system of second-order Fuler-Lagrange equations. Classical
solutions of these equations are sections s of the fiber bundle X — Y whose second
order jet prolongations J?s satisfy (3.5). Expanded in more detail, these equations are

QL os— (Oy+ 0xs’0; + 3>\3,sz8§‘)8{\£ os=0. (3.6)

The first variational formula (3.2) provides the standard procedure for studying the
differential conservation laws in Lagrangian field theory. Let u be a projectable vector
field on a fiber bundle Y — X, treated as the generator of a local 1-parameter group of
gauge transformations. Introduce the Euler-Lagrange components

5Z£ = &E — d)ﬂ'('i)\ = (@ — dﬁf)ﬁ
Substituting this into (3.6) gives the decomposition
Ly L= (u' —yu")6;(L)w — d\TMw, (3.7)

where
= ﬂ;\(u“yz —u') —urL

are the components of the symmetry current T = T*w, associated to u. We now
introduce the weak equality ® ~ ¥ to denote equality modulo the Euler—-Lagrange
expressions §;(£) and their total derivatives (i.e. equality on the shell Ker£y). From
(3.7) we obtain the weak identity

L, L~—dI"w,
and then, expanding the Lie derivative using the first variational formula (3.5),
hu L + [u)‘(%\ +u'0; + (dyu' — y;aw“)aj],c ~ —dy [W;\(u“yi —u') — u’\ﬁ}.

Suppose now that the Lie derivative L j1, L vanishes, i.e. the Lagrangian L is invariant
under gauge transformations generated by the vector field u. Then we obtain the weak
conservation law

0~ —dy[m) (u'y), — u') — uL]
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for the symmetry current
I=T w,, I'=m)(u'y,—u —u L), (3.8)

along the vector field u. Moreover, L1, L = 0 implies the weak identity d,\Z* ~ 0, and
then pulling back along a solution s (so that §;(£) o J%s = 0) yields the differential
conservation law

(T os)=0 (3.9)

on solutions of the Euler-Lagrange equations (3.5). This differential conservation law
implies the integral conservation law

/ s =0, (3.10)
ON

where N is a compact n-dimensional submanifold of X with boundary 0./V.
It may happen that a symmetry current Z (3.8) can be put into the form

I=W +dyU = (W*+d,U")w,. (3.11)

where the term W contains only the variational derivatives ;£ = (0; — d,\ﬁf)ﬁ, ie.,
W =~ 0, and
U=U"w,: J'Y = A"°T*X

is a horizontal (n — 2)-form on J'Y — X. In this situation one says that Z reduces to
the superpotential U. Geometrically, this decomposition isolates two contributions to
the current: W, which vanishes once the Euler-Lagrange equations are imposed (so it
measures the failure of the field to be on-shell), and dy U, which is a total divergence.
Physically, the total divergence dyU means that the corresponding conserved quantity
is determined entirely by a boundary term (the superpotential). Such decompositions
occur in gauge theories, where Noether currents are not local densities but are rather
“trivial” up to boundary contributions.

On the kernel, combining the Euler-Lagrange equations §;£ = 0 yields the funda-
mental equation

T —dyU = W(5;,L) = 0. (3.12)

Later we will see that, in the abelian gauge theory of electromagnetism, (3.12) repro-
duces Maxwell’s equations. If a current Z reduces to a superpotential, then the local
conservation law (3.9) and its integral version (3.10) become automatic consequences of
the decomposition. At the same time, the superpotential form (3.11) yields the integral

/ s*T = / s*U, (3.13)
Nn—1 ONn—1

which expresses conservation in terms of flux through the boundary. This may be viewed

relation

as an integral reformulation of the Euler-Lagrange equations. Such superpotentials are
a recurring feature in both gauge theory and gravitation, where symmetry generators
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depend on derivatives of the gauge parameters.

Now let us consider the situation with background fields. We will show how con-
servation laws can fail if these fields do not lie in the kernel (3.5). Suppose we have a
fiber bundle Y — X with coordinates (2*,%") for dynamical fields, and a second bundle
Y’ — X with coordinates (z*,y*) for background fields, which are fixed by sections

Y =0"x), Yk =0r"(x).

The total configuration space is Yio; = Y X x Y, and a Lagrangian L is defined on J!Yi;.
A projectable vector field u on Y. projects onto Y’ because gauge transformations of
background fields do not depend on dynamical ones. In coordinates it has the form

u = u(2")O\ + u®(z, y*)0, + u'(xt, 4", y7)0;. (3.14)

Substituting (3.14) into (3.2) yields the first variational formula in the presence of
background fields,

hu L + [u)‘(?,\ + U0y + u'0; + (dau — yﬁ@,\u”)ai + (dyu' — yZ@Au“)ﬁﬂ L
= (u — yju) 0oL + mydy(u® — yout) + (u' — yiu)6L
- d,\[ﬂ;\(u“yi —ut) —urL]. (3.15)

Then by dropping the term (u’ — yiu*)d;£ on the right-hand side of (3.15), we get the
weak identity

ML + [uOy + udy + u'0; + (dyu” — yl‘j@w’”)ai + (dyu' — yZ@w“)@ﬂ L

~ (u® — yut)0,L + mhdy (u® — yput') — dA[W{\(u“ny —u') —uL]

which holds on the kernel (3.5). If a total Lagrangian L is invariant under gauge

transformations of the product Y., we obtain a weak identity in the presence of
background fields,

(u® — yau) 0. L + mody(u® — yuut') ~ dA[Wf‘(u“yL —u') —urL). (3.16)

Thus, when background fields fail to satisfy the kernel condition (3.5), the left-hand
side of (3.16) does not vanish. In other words, the would-be conserved current acquires
additional source terms involving the background fields. Physically this expresses the
fact that external backgrounds can inject or absorb energy-momentum or charge, and
so strict conservation of the Noether current is violated.

3.3. Gauge invariance. Let P — X be a G-principal bundle. In a gauge model with
symmetry group (G, the gauge potentials are identified with principal connections on P,
i.e., with global sections of the bundle of principal connections C' — X, while matter
fields are represented by global sections of a P-associated vector bundle Y, called the
matter bundle. Thus the total configuration space of a gauge model (with unbroken



23

symmetries) is the product bundle
JWir = J'Y xx J'C — X.

In gauge theory, different types of gauge transformations are considered. In the most
general terms, a gauge transformation of a principal bundle P is an automorphism ¢ p
that commutes with the right G-action, i.e.,

Rgoq)p:q)pORg

for every g € G. Such an automorphism of P induces a corresponding automorphism of
any P-associated bundle Y = (P x V) /G,

(p,v) -G = (Pp(p),v) - G,

for p € P, v € V. Likewise, an automorphism of P determines an induced automorphism
Oo: J'P/G — J'Op(J'P)/G (3.17)

of the bundle C' = J'P/G of principal connections.
To derive Noether conservation laws we restrict attention to vertical automorphisms
of P, which we call gauge transformations. Every such gauge transformation is given by

®p(p) =pflp), PEP (3.18)

where f: P — (G is a G-equivariant function satisfying

fpg) =9 'f(p)g, pePgeq.

This form amounts to the fact that vertical automorphisms act only along the fibers
of P, and that any such automorphism can be described by multiplying p € P on the
right by a group element that depends smoothly on p.

There is a natural one-to-one correspondence between these G-equivariant functions
f: P — G and the global sections of the group bundle PY = (P x G)/G whose typical
fiber is GG, acted upon by conjugation (the adjoint representation). The group bundle
PY acts fiberwise on any P-associated bundle Y by

PYxxY =Y
((p,9) -G, (p,v) - G) = (p,gv) - G,
for ¢ € G, v € V. Thus, a gauge transformation ®p defined by ®p(p) = pf(p)

corresponds to the global section s : X — PY given by z + (p, f(p)) - G for any p € P,.
Hence the gauge group Gau(P) of vertical automorphisms of P — X (under composition)
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is canonically isomorphic to the group of global sections of the group bundle P¢.

In order to understand the structure of the gauge group, it is useful to restrict
attention to certain subgroups. Here we will focus on one-parameter subgroups generated
by G-invariant vertical vector fields £ on P, called the principal vector fields. There is a
natural one-to-one correspondence between principal vector fields on P and sections of
the gauge algebra bundle Vo P — X, so we may write

§ =& (x)ep,  £el(VaP),

where {e,} is a local basis of g and the functions £P(x) are called the gauge parameters.
The adjoint action of a principal vector field & on another field ¢ is given by the Lie
bracket

50 : VGp — VGp
5 — [5075] = qu 55 gq €p7

where ¢, are the structure constants of g. In terms of gauge parameters, this leads to
the transformation law

& =, ¢ (3.19)

by the coadjoint representation. Given a principal vector field £ on P, there is an induced
principal vector field & on any P-associated vector bundle Y — X, corresponding to
the infinitesimal action of the one-parameter subgroup (®y) of gauge transformations
on Y. In local coordinates it is

§Y == §p1;817
where the I, are vectors representing the Lie algebra g in the chosen G-module V/, i.e. the
generators of the group action on the typical fiber V of Y. Concretely, if p: G — GL(V),
then I, = dp(e,) € gl(V'). Similarly, the principal vector field on the bundle of principal
connections C' corresponding to the infinitesimal gauge action is

Eo = (048" + &, al €7) 0L (3.20)

qp K

Thus, the combined principal vector field on the product C' xx Y is

Sve = (0,8 + c,ale?)or + 5’)];&. (3.21)

ap

Remark 3.2 (Collective index notation). For brevity, we introduce a collective index
B so that
uf“@B = 0,01, uf@B = g, 0r + 1,0;.

With this notation we may rewrite

Sye = (ur0,8° + uleP)op.
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A Lagrangian L on the configuration space J!'Y;y is said to be gauge-invariant if
the identity

Ly L =0

13%e]

holds for every principal vector field € on P. In this case, the first variational formula
(3.2) yields the identity

0= (u)€ +u t9,") 0L + dr[(ul & + ult9," )] (3.22)

where dpL are the variational derivatives of L and the total derivative operator (1.5) is
given by
dy = 0y + aﬁuﬁfj + yg&

The equation (3.22) is equivalent to the system of equations
(i) ugopLl + d,(ulmlh) =0,
(il) uf"opL + dy(ubrmyy) +ulnly =0,
(il) ulrly +ultmy = 0.
These three conditions characterize the gauge invariance of a Lagrangian.

Let us specialize to the case of a Lagrangian
L:J'C— A"T*X,

where C'is the bundle of principal connections, for free gauge fields, meaning a Lagrangian
depending only on the gauge potentials af and their first derivatives, without coupling
to additional matter fields. In this case, the conditions (i)—(iii) become

(i) ¢, (aBonL 4 ab ML) = 0,

Ap-r
(il) O4L + ¢ ahd L =0,
(iit) AL+ L =0,

We utilize the canonical splitting (2.17) of the jet manifold J'C' into symmetric and
antisymmetric parts:
ay, = Sy, + 3Fau

where 83, is symmetric and F73, is antisymmetric in (A, x). Introducing coordinates

(a%, S, F,y), the equations (i) and (iii) simplify as follows. For (iii), since 4*£ denotes

p

LA decomposing into symmetric and antisymmetric parts

differentiation with respect to a
gives

oL | 10r
87, " 20F%,

PN =
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Equation (iii) requires symmetry under (i, \), but the antisymmetric part already
cancels. Therefore the condition (iii) is equivalent to

or
a8,

= 0. (3.23)

For (ii), we will show that this simplifies to the identity
oifal =0, (3.24)

which expresses the dependence of L solely through the field strength F.

Starting from (ii)
r Ap o
oL+ cp ak 0L L = 0,

we use the canonical splitting
1
a;M = S;H + 5}_;:“,

so that differentiation with respect to aj,, decomposes as

oL 1 oL
oML = — + oa
IS, 20F],
By (iii) we have os], = 0, hence
JL = 1 oL '
20F),
Substituting into (ii) gives
oL
ML+ 1 ah—— =0. 3.25
q + QCan)\ af;)\ ( )
Now using
fgxﬁ - aaﬁ aga + CgtaiatﬁH
we find 95
af _r T S
dal, chy Ok ay + iy ag, 0.
Hence the chain rule yields
oL OF.4 . oL oL

oIL =

t r S
— =C, 0y —— +C. a .
OF.g Oaj, "V OFL, U OFL,

oL oL

In the second sum rename « <+ 3 and s <> t; then use the antisymmetr =—
b Y Y OF%, oF",
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to obtain or
ML = (c, — ) ay ——.
q qt tq) B
OF 4
Since the structure constants are antisymmetric in the lower indices, c¢;, = —cj,, this

simplifies to or
oML =2, a'y ——.
q ™8 5 }7;6
Combining this with (3.25) yields (3.24). In essence, (iii) kills the symmetric dependence
on second jets, and (ii) then forces any remaining first-order dependence of £ on the
variables af, to appear only through the antisymmetric combination F73,. This is the
algebraic underpinning of the heuristic “gauge invariance implies dependence only on
the curvature.”
A glance at the equations (3.23) and (3.24) shows that the gauge-invariant Lagrangian
L: J'C — A"T*X factorizes through the field strength F of gauge potentials, i.e.,

L=LoF:J'C—C_— A'T*X. (3.26)

Using this, the equation (i) can be written as

croFy oL

pq /\ua]:j\" =0,
n

which is an equivalent way of formulating the gauge invariance of the Lagrangian L.

3.4. Yang-Mills Lagrangian. We discuss the Yang-Mills Lagrangian Ly of gauge
potentials on the configuration space J'C' in the presence of a background metric g on
the base X. It is given by

1 14
Ly = 4—82a§qg’\“gﬂ ffﬁfgﬂ/ | det(g,w)| w, (3.27)

¢ is a nondegenerate G-invariant metric in the Lie algebra g, and ¢ is a coupling

where a
constant. The equations (i)-(iii) with the Lagrangian L = Ly are called the Yang-Mills
equations, and a principal connection A solving the equations is called a Yang-Mills
connection. The Yang-Mills theory has become widespread since the foundational work
of Atiyah, Donaldson, Witten, and many others, cf. [AJ78, W94, T94, DK97, CVB03|.

We note the following useful fact that arises in relation with the Yang-Mills La-
grangian (3.27). If one chooses an affine connection I' : C' — J'C' on the bundle of
principal connections C' — X, then the identity (2.18) shows that the Yang-Mills La-
grangian Ly s factorizes through the covariant differential associated with the connection
Sol'on C — X, where S = pr, : J'C — C.

On the kernel of the Euler-Lagrange operator £, (3.5), the identity (3.22) becomes
the weak conservation law

0~ dy[(u)& + ult0,8")my] (3.28)
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of the Noether current
TN = —(ule + ult 9,8y (3.29)

Accordingly, the equalities (i)—(iii) on the kernel (3.5) lead to the familiar Noether
identities for a gauge-invariant Lagrangian L:

(i) du(uymy) = 0.
(i) da(uptmsy) +upwlh =~ 0.

i BAH ) Buo A
(iil) w7y +utag = 0.

This system is equivalent to the weak equality (3.28) because the latter must hold for
arbitrary gauge parameters &P(x). Expanding (3.28) in powers of ¢ and its derivatives,
the coefficients of £, 0,,£7, and 0,0,\£P must each vanish separately, which yields precisely
the three identities (i)—(iii).

A glance at (3.28) and (3.29) shows that the Noether conservation law and current
are written explicitly in terms of gauge parameters. The weak identities (i)—(iii) ensure
that this dependence is compatible with gauge covariance. Concretely, they guarantee
that if the conservation law holds for a choice of &, then it also holds after an arbitrary
variation £ — £ 4+ 0£. In this sense the conservation law is gauge-covariant, it remains
consistent when the parameters are changed by the coadjoint representation (3.19).
Thus, the parameter dependence of the current is the mechanism that enforces gauge
invariance of the conservation law.

The equations (i)—(iii) are not mutually independent, in fact (i) follows from (ii)
and (iii). This redundancy reflects the fact that the current (3.29) can be rewritten in
superpotential form

I = Pug oLl — d,(Pulray), (3.30)

where the antisymmetric superpotential is
U = —ePullimy.

Since a matter field Lagrangian does not involve the second-order jet coordinates, the
expression of U* simplifies and the Noether superpotential reduces to

Ut = Pk, (3.31)

so that it depends only on the gauge potentials and their first derivatives, and not on
matter fields.

The corresponding integral relation (3.13) reads

Joa = [ ) (3:32)

where N"~1 is a compact oriented (n — 1)-dimensional submanifold of X with boundary
ON™1. This expresses the current—field relation in integral form: the flux of the Noether
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current through N"~! is entirely determined by the superpotential flux across ON™ 1.
In physical terms, one can view (3.32) as relating a symmetry current to the gauge field
sourced by it. In the abelian case of electromagnetism, the analogous relation reduces
to the familiar balance between the electric current and the electromagnetic field it
generates. The key difference is that in the abelian case the gauge parameter dependence
drops out, while in the nonabelian case the current retains explicit £-dependence as a
manifestation of gauge covariance.

Example 3.3 (Abelian gauge model). As we saw above, in the nonabelian case the
Noether current and the conservation law generally depend on the gauge parameters
€P(z), and we showed that this dependence is controlled by the Noether identities (i)—(iii),
which guarantee gauge covariance. By contrast, for an abelian symmetry group G the
situation simplifies, and one can take the Noether current and conservation law to be
independent of gauge parameters.

Let us consider the electromagnetic theory, where G = U(1) and the infinitesimal
action on the fiber is y — 4y. In this case, a gauge parameter £ is not transformed
under the coadjoint action (3.19), so it may be chosen as a constant. Setting £ = 1 for
convenience, the Noether current (3.29) becomes

T = —uPry.
For U(1), this reduces further to
T = —iyjﬂg\.

Thus in the abelian case the Noether current is independent of gauge potentials and
remains invariant under gauge transformations. Physically, this current is (up to sign)
the familiar electric current carried by matter fields.

In this case the weak conservation law for the Noether current (3.28) reduces to the
continuity equation
d\I* ~ 0,

and the integral relation (3.10) becomes

/ s*(yjﬂj)-‘)w)\ =0,
N

for any compact n-dimensional submanifold N C X with boundary ON. This is precisely
the integral equation of continuity, expressing charge conservation: the total flux of the
electric current through ON vanishes.

When ¢ = 1, the electromagnetic superpotential (3.31) takes the form

Uk = gk = _i FHA
47 ’
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where F is the electromagnetic field strength. Substituting this into (3.12) yields
1 d UN oG A
o pF =y’ Ty,

which is exactly the system of inhomogeneous Maxwell equations: the divergence of
the electromagnetic field strength equals the electric current density. Accordingly, the
integral relation (3.32) is the integral form of Maxwell’s equations. In particular, one
recovers Gauss’s law: the flux of the electric field through a closed surface is equal to
the total electric charge contained inside the surface. o

Let us now turn to energy-momentum conservation laws in gauge theory. For the sake
of simplicity, we will consider only gauge theory without matter fields. We work with
the Yang-Mills Lagrangian Ly, on the jet manifold J'C'. First recall the construction
from Example 2.4. Given a vector field 7 on X, let A be a principal connection on the
principal bundle P — X, and let

74 = 70\ + A%e,)

denote the horizontal lift of 7 onto P by means of the connection A. This vector field, in
turn, gives rise to the vector field 74 on the bundle of principal connections C', namely

Ta =10+ [0, A} + Cpg@h AY) — GMT’B(ag — Aj)or. (3.33)
We will now derive the energy-momentum current along the vector field 7p.

Since the Yang-Mills Lagrangian Ly, also depends on a background metric, we will
consider the total Lagrangian

LG
Lyy = 12 “Jﬁyffﬂ}"g,, | det(o)|w, (3.34)
with respect to a metric o, on the total configuration space J'(C x x Sym* T'X), where
the tensor bundle Sym* T'X is provided with the holonomic coordinates (2, o#). Given
a vector field 7 on X, it has a canonical lift

7 =700+ (0,707 + 0,7°0"*) 00

onto the tensor bundle Sym? 7* X, which is the generator of a local 1-parameter group
of general covariant transformations of Sym? 7*X. Thus, we have a lift

7A:A = T)‘a)\ + [T)\(auA;\ + C;qaﬁAi) - a//rﬁ(ag o Ag)} 87’f

+ (0,70 + 0,77 0"*) D (3.35)

of a vector field 7 on X onto the product C' x x Sym? T*X. For the sake of simplicity,
we denote it by the same symbol 7 4.
Our next task is to derive an explicit formula for the Noether current in the case of the
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Yang-Mills Lagrangian L = Ly,; and Yang-Mills connection A, i.e. the energy-moment
current Z4 along the vector field 74. We start from the first variational formula. For a
projectable vector field v on the total configuration bundle, the first variational formula
(3.2) reads

Ly, L= (6¢") 0L + dy(m 09" — 0 L),

where ¢P denotes all fields, 6L are the Euler-Lagrange expressions, 7% = 0L/0(0\¢?)
are the canonical momenta, and ¢ is the induced field variation.

Specializing to the symmetry generated by 7, we take v to be the lift 74 of the base
vector field 7 defined in (3.35). Then L7, L = 0 because the Lagrangian is invariant
under the base diffeomorphism and gauge transformation generated by 74. Thus

0= (0¢") 6pL + d\ (7 66" — TL).

Now restrict to the Yang—Mills kernel. For pure Yang-Mills (no matter fields) the
only dynamical fields ¢® are the gauge potentials a’, (and we treat the metric as a
fixed background for this step). Hence m3d¢” reduces to w2 da’, with da”, = L, A" the
induced variation of the connection components. On the Yang-Mills kernel we have
0L =~ 0, so the bulk term vanishes and we are left with the weak conservation law

dy(m)6a, — L) ~ 0.

Recalling the definition (3.29), the Noether current associated to 74 is the horizontal
(n — 1)-form whose components are the quantity inside the divergence. Thus the
energy-momentum current is defined by

) = mVéa, — L. (3.36)

Going a step further, if one inserts the explicit expression for da;, given by the lifted

field variation (the bracketed expression in (3.35)), and expands m*da”, one obtains
y=m"[ - ™8, A}, + ¢ ab AL — al ) + 0,7 (a), — A))] — L. (3.37)

The total Lagrangian (3.34) is by construction invariant under gauge transformations
and general covariant transformations. Hence its Lie derivative along the vector field
T4 vanishes. Using the general formula (3.16) for weak identities in the presence of a
background field, one obtains, on the Yang-Mills kernel,

0~ (0,7%¢"" + 0,77 g"™ — 0r\g*P 1) 0up L — dr\T). (3.38)
The weak identity (3.38) can be rewritten as
0~ hrt)/| det(g)| — TCith/| det(g)] — daT) (3.39)

where C’fj ,, are the Christoffel symbols of the Levi-Civita connection for g and tg are the
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components of the metric energy-momentum tensor of the gauge field, which is defined
by the formula

1
OSLyva = 5 V191" 09 (3.40)

Remark 3.4 (Metric energy-momentum tensor). Regarding our definition of the metric
energy-momentum tensor via (3.40). Treating Ly, locally as a function of the metric

components ¢,3, we have

0gag-
agaﬁ ?

Comparing with (3.40) and equating coeflicients of the variations dg,s gives

OLy 1
= —/|g|t*".
5 V9l

8ga5

5gLYM =

Multiplying both sides by ¢g"* yields

OLvy s 1 1
po _ e H
Jges 2 lglg 2\/\9\ 55

and therefore
|det(g)| = 29" 0up Ly m

which is another common definition of the metric energy-momentum tensor.

If instead one regards the independent metric variables to be the inverse metric ¢®?
(i.e. choosing the coordinates ¢** on Sym?TX), we may write the metric variation of

LYM as
aLYM

0g*P
Then using the relation §g*° = —g**¢”*dg,, and comparing with (3.40) gives

5gLYM = (Sgaﬂ.

OLym ,  ap g v
Gger (99 00) = \/|g [0 G-

Equating coefficients of dg,, yields

a VaLYM 1 v
—g"g" g = SV gl

dg*P 2

Multiplying byg, g lowers an index so that

aLYM H
— (S g t#
997 \/\g

Hence
OLy

g8
so a minus sign appears if 9/9¢g*” is used instead of 9/9g,s. As always, one should be

e/ lgl = —29"
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careful with conventions. o

In the presence of a background field g we will use the notation

Vgl = Vdet|glw, w=dz'A---Ada"

to denote the Riemannian density.

Fact 3.5. For the Yang-Mills Lagrangian Ly = L£+/|g] with background field g, we
have the following identity for the momentum conjugate to O\A}:

a1 )
W? = W = gaqufq)\ \/ |g| (341)

where FIM = g)‘o‘g”ﬁFan.

Proof. For the Yang-Mills Lagrangian (3.34) we use the fact (3.26) that Ly, factors
through F, together with the chain rule. Indeed, the Yang-Mills Lagrangian depends
on the connection a;, only through the field strength

F, = 0ua, — 0,a;, + ¢y abal.

v pgp

By the chain rule, the momentum conjugate to aj, is

v 0L oL OFg
o 8((9)\012) n 8]—'55 8(@@2)

T

Next, using the linear dependence of F on the derivatives of a,

OF!
aB A A
08 paahals — 5)o),
9(Oxay,) o
which reflects the antisymmetry 7, = —F3,. Therefore,

e OL
OFL,

oL
0F;,’

JI(ON0Y — SYo) =2

T

where the factor of 2 arises from the antisymmetry of F ;. Finally, inserting the explicit
form of the Lagrangian Ly, (3.27) yields the formula (3.41). n

Fact 3.6. For the metric energy-momentum tensor, the following identity holds:
/gl = mV Fl, — 6Ly . (3.42)

Proof. We use the density notation \/|g| and set t#, = ¢g"“t,,. The Yang-Mills La-
grangian density is

LYM:/:\/’Q’ E = ! ./—:p ./Tqaﬁ

42 pq
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Varying Ly with respect to the metric g,, yields two contributions: the variation
of the volume factor \/|g| and the variation of F7°# through the metric used to raise

indices. Using 6+/]g] = £+/]9]¢" 09, we obtain

1 a a
SLovar = 52505 | OV/191) FL 1+ V/Igl (FL, 1)

1
= V1o 30" FLaF 1 S + S(FL,F17) .

Now vary the contraction }"ﬁﬂ}" 728 by varying one raised index,
O(FL,F10) = =2 F4 FP57 §gap.

and hence

SLyn = gl 39 FL Tt — 2 e T g,

1
42pq

Comparing with 6Ly = 3t*/1/|g| g, from the definition (3.40) yields

v 1 G |1 pv af v,
= 2_52%11 [Egu apt " 2T, T p}-

Lowering/raising indices and rearranging gives the equivalent form

|g| gaqup)\y‘/—:q \% |g| - 52LYM

Finally, recall the identity (3.41) for the conjugate momenta 7. Substituting (3.41)
into the previous expression yields

t)\\/g = 7T>\V.Fq - 5>\LYMa

which is the identity to be shown. [ ]

In particular, suppose A is a solution of the Yang-Mills equations. Taking the lift 7,
(3.35) with A = A, the energy-momentum current (3.37) reduces to

Iy o A =7ty 0o A)y/|det(g)].
Then the weak identity (3.39) on the Yang-Mills connection A becomes
—CP (o A) \/MT—dA< [det(g )|)
This is exactly the familiar covariant conservation law
Vo, ((tg o A)V/] det(g)|) —0, (3.43)

where Vy, is the Levi-Civita covariant derivative for the background metric g.
Note that, in the case of an arbitrary principal connection A, the corresponding
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weak identity (3.39) differs from (3.43) by the Noether conservation law
0~ dr(&m"), (3.44)

where

S = €10 = (D& + Ll & = (AL — A7)

qap~v

is the principal vector field (3.20) on C. This observation leads to the following key
idea: conservation laws for two different principal connections A and A differ only by a
Noether current, which reduces to a superpotential. Thus, while the explicit expression
for the current depends on the choice of connection, the covariant conservation law
(3.43) remains the physically relevant content.

3.5. Belinfante-Rosenfeld superpotential. It is instructive to compare the above
discussion with the familiar distinction between the canonical and the metric stress-
energy tensors in classical field theory. Given a Lagrangian L with background metric g,
Noether’s theorem applied to translations yields the stress-energy tensor

oL
8(8@“)

where ¢® denotes generic field variables. This tensor is conserved in the weak sense, but

Acan
Tu =

8,0" — S)L,

in general it is neither symmetric nor gauge-invariant. On the other hand, varying the
action with respect to the metric g produces the metric stress-energy tensor

Ame Av
Tt/ det g| = 29™ 9, L,

which is symmetric by construction and covariantly conserved with respect to the

Va, <T’\ifet\/\detg]) = 0.

We recall the Belinfante-Rosenfeld procedure in classical field theory. In general,

Levi-Civita connection:

the canonical tensor 7°*" can be made symmetric and gauge-invariant by adding the
divergence of an antisymmetric tensor, the Belinfante—Rosenfeld superpotential:

ABR Acan VA VA Av
TABR — pean g A, U, = UV,

This improved tensor TBR is exactly the metric stress-energy tensor obtained by varying
the action with respect to g.

Fact 3.7. L = Ly be the Yang-Mills Lagrangian and let A be a Yang-Mills connection.
For the Noether current ) we have the on-shell decomposition

) ~ T“tlj\\/m + 4,0

in terms of the metric energy-momentum tensor t;} and the Noether superpotential U".
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Proof. We work with the Lie-algebra-valued forms

A= Ale, dat, F = 1.7:;,6,, dz" A dz”,

)

and let D denote the covariant derivative D =d + [A4, -]. Cartan’s formula for the Lie

derivative of the connection along the base vector field 7 = 7#9,, yields
LA = F + D(.;A).
In components this reads
LA, = ™F,, + D,(m"A,)", (3.45)

where

D,(t"A,)" = 0,(T"A}) + cp ab (T AL).

pq-v

Recall from (3.36) that the Noether current associated to the diffeomorphism generated
by 7 is given by
Iy = m¥éa, — 7L,

where " = 9L/9(0\al) and dal, = L, A" is the field variation induced by 7. Using
(3.45) and setting (" := 7H A, we obtain

Iy =m (" F, + D) — 7L
=TV F, + D, — L. (3.46)

Now rewrite the second term by the covariant product rule:
D" = Dy(m¢") — (Dym) ("
Hence (3.46) becomes
I =1" (7‘(‘7),\”.7;,/ — 5;}5) + D, (mM¢") — (D,m™) (" (3.47)

Moreover, the weak vacuum form of the Yang-Mills Euler-Lagrange equations imply
that the covariant divergence of 7 vanishes on-shell, i.e.

D, =~ 0 or equivalently D,(0L/0F",) ~ 0.
Thus the last term in (3.47) vanishes on-shell, and we obtain the on-shell identity
Iy ~ T(m F, = 0,L) + Dy(m¥(").

Finally note that D, (7 (") equals the ordinary divergence d,(7}*(") up to connection
vA  Setting

v
U = w7 = (T A,), and noting that 7 is antisymmetric in v, X, we may rewrite

terms which are already accounted for by the on-shell vanishing of D,
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D, (m¢") = d,U"*. Moreover, using the identity (3.42) for the metric energy-momentum
tensor
A . AV T A
t, lg| = Frw — 0,L.

we arrive at
) ~ )9l + d,U,

which is the desired decomposition. [ |

This equation exhibits that the energy-momentum current Z% differs by a total diver-
gence from the metric energy-momentum T“ti)x /| det g|. Because U is a superpotential
(i.e. its divergence is a Noether current that itself reduces to a boundary term), the
difference carries no independent local dynamics and does not affect the covariantly
conserved quantity (3.43).

The passage from Z) to t,’) is the gauge-theoretic counterpart of the Belinfante-
Rosenfeld construction in classical field theory, where one adds 9,U"*, (with U"*,
antisymmetric in v, A) to the canonical tensor to obtain the symmetric metric tensor.
The physically relevant energy-momentum tensor in gauge theory is t;\“ while the Noether
current Z} can be viewed as its precursor, differing only by a total divergence.

In the Yang-Mills setting, the gauge-theoretic superpotential (3.31) plays the role
of that antisymmetric improvement term. It removes the connection-dependent part
of the current and yields the physically relevant, covariantly conserved metric energy-
momentum tensor. Similarly, the current Z} in (3.37) is analogous to the canonical
stress-energy tensor (as it depends on the choice of a principal connection A used
to define the lift 74) and the metric energy-momentum tensor ¢, in (3.39)-(3.43) is
analogous to the metric stress-energy tensor (being obtained from the metric variation
of the Yang-Mills Lagrangian). The weak identity (3.39) shows that the difference
between these two objects is exactly accounted for by a Noether current of the form
(3.44), which, as we have seen, reduces to a superpotential.
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