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1. Introduction

Broadly speaking, gauge theory is the study of connections on principal bundles. Given
a Lagrangian on a principal bundle, one obtains an Euler-Lagrange operator, then one
can define special connections associated with the variational problem (critical points of
the action functional). Starting with this idea, there are a wide variety of directions one
could pursue. See for instance [AJ78, DK97, CVB03, H17]. Let us briefly outline two
distinct but interrelated directions of gauge theory:

1. Field theory : gauge theory provides a common mathematical framework for de-
scribing various field theories arising in physics. For example, electromagnetism,
gravitation, quantum field theory, etc. In this context, fields are sections of configu-
ration bundles associated to a given principal bundle, the potentials correspond to
connections, and the field strength is the curvature of the connection. Conservation
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laws are then understood as consequences of Noether’s theorem, arising from gauge
symmetries of the action functional. The aim of gauge-theoretic field theory is to
identify natural geometric structures (bundles, connections, metrics, Lagrangians)
whose critical points reproduce the fundamental equations of physics.

2. Smooth invariants: Distinguishing smooth structures on 4-manifolds is difficult.
Topological invariants like Betti numbers or Euler characteristic are not sufficient.
In order to obtain an interesting invariant of the smooth structure, the general
idea is to fix some additional geometric structure, for example a principal bundle
with connection, then write down a non-linear PDE from that structure, and then
study the topology of the moduli space of solutions. If one is lucky, this does not
depend on the additional choices made, only on the smooth structure. There are
many examples of this procedure, including Donaldson’s Yang-Mills invariants,
Seiberg-Witten theory, Bauer-Furuta theory, etc.

In this note, we will focus on pursuing the first direction. In addition to being
interesting and useful in its own right, it turns out that the first direction is useful for
the second. Although we will focus on the mathematics, it is instructive and interesting
to relate the physical motivation associated with the mathematical formalism, so we will
frequently do so. For example, in the U(1) case the Yang-Mills equations reduce to the
vacuum Maxwell’s equation governing electromagnetic fields. Our primary references
are [DK97, NS96, T94, CVB03, H17]. We will fill in certain details along the way that
are often left out of the literature, and summarize some of the main themes.

1.1. Preliminaries. In this section we introduce our notation and conventions, and
the basic objects we will be working with.

Throughout this note we will consider G-principal bundles πP : P → X with
structure group a real Lie group G, dimG > 0. By definition, P → X is a fiber bundle
equipped with a free transitive right G-action on P , and equipped with a bundle atlas
{(Uα, ψα)} whose trivialization morphisms

ψP
α : π−1

P (Uα) → Uα ×G

are G-equivariant in the sense that

(pr2 ◦ψP
α )(pg) = (pr2 ◦ψP

α )(p)g

for every g ∈ G and p ∈ π−1
P (Uα). Owing to to this property, every trivialization

morphism ψα determines a unique local section zα : Uα → P such that

pr2 ◦ψα ◦ zα = 1,

where 1 is the unit element of G. The transformation rules for zα are given by

zβ(x) = zα(x)ραβ(x), x ∈ Uα ∩ Uβ, (1.1)
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where ραβ(x, g) = ραβ(x)g are the transition functions for the bundle atlas of P . Con-
versely, the family {(Uα, zα)} of local sections of P obeying (1.1) uniquely determines a
bundle atlas for P . Note that there is a pull-back operation on the principal bundle
structure: the pull-back f ∗P of a principal bundle is also a principal bundle within the
same structure group.

Let G be a Lie group. For g ∈ G we let Lg and Rg denote the left and right
multiplication automorphisms. We let gl denote the left Lie algebra of G, consisting
of left-invariant vector fields on G. We will let {ϵm} denote a basis for gl, and let ckmn

denote the structure constants, so that

[ϵm, ϵn] = ckmnϵk.

As usual, there is a natural isomorphism of gl with the tangent space T1G given by
assocating any v ∈ T1G with the left-invariant vector field g 7→ Lgv on G. Of course,
one may also consider the right Lie algebra gr.

The left action Lg of a Lie group G on itself defines its adjoint representation g 7→ Adg

acting on the right Lie algebra gr, and its identity representation acting on the left Lie
algebra gl. Consequently we have the adjoint representation

adϵ′ : gr → gr

adϵ′(ϵ) = [ϵ′, ϵ]

of the right Lie algebra gr on itself.
Any left action G×Z → Z of a Lie group G on a manifold Z yields a homomorphism

gr → T (Z)

ϵ 7→ ξϵ

into the Lie algebra T (Z) of vector fields on Z. The homomorphism is defined by the
relation

ξAd g(ϵ) = dg ◦ ξϵ ◦ g−1.

Given a basis {ϵm} for gr, the vector fields ξϵm are called the generators of a representation
of the Lie group G on Z. Let g∗ = T ∗

eG be the vector space dual of the tangent space
T1G, i.e. the dual Lie algbera. It is provided with the basis {ϵm} dual to the basis
{ϵm} for T1G. The group G and the right Lie algebra gr act on g∗ by the coadjoint
representation

ad∗
ϵm(ϵ

n) = −cnmkϵ
k.

A differential form ϕ on the Lie group G is said to be left-invariant if L∗
gϕ = ϕ.

The exterior derivative of a left-invariant form is again left-invariant. In particular, the
left-invariant 1-forms satsify the Cartan equations

dϕ(ϵ, ϵ′) = −1

2
ϕ([ϵ, ϵ′]), ϵ, ϵ′ ∈ gl.
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We have a canonical gl-valued left-invariant 1-form

θl :T1G→ gl, θl(ϵ) = ϵ

on the Lie group G. With respect to the decomposition θl = θml ϵm, the coefficients θml
make up the basis for the space of left-invariant exterior 1-forms on G:

ϵm⌟ θ
n
l = δnm.

The Cartan equations, written with respect to this basis, read

dθml =
1

2
cmnkθ

n
l ∧ θkl .

Analogous statements hold when one replaces “left” with “right”.
The canonical action of G on P on the right defines the canonical trivial vertical

splitting
α : V P

≃−→ P × gl

such that α−1(ϵm) are the familiar fundamental vector fields on P corresponding to the
basis elements ϵm of the Lie algebra gl.

Taking the quotient of the tangent bundle TP → P and the vertical tangent bundle
V P → P by dRG (or by G) yields the vector bundles

TGP = (TP )/G→ X and VGP = V P/G→ X.

The fibers of TGP encode both vertical directions (isomorphic to gl) and the projec-
tion onto horizontal directions. The natural projection TGP → T (X) is given by
differentiating the bundle projection P → X.

Sections of TGP → X are G-invariant vector fields on P , and sections of VGP → X

are G-invariant vertical vector fields on P . Hence, the typical fiber of VGP → X is the
right Lie algebra gr of the right-invariant vector fields on the group G. The group G

acts on this typical fiber by the adjoint representation.
The Lie bracket of G-invariant vector fields on P descends to the quotient by G and

defines the Lie bracket of sections of the vector bundles TGP → X and VGP → X. It
follows that VGP → X is a Lie algebra bundle (called the gauge algebra bundle) whose
fibers are Lie algebras isomorphic to the right Lie algebra gr of G.

Given a local trivialization of P , there are corresponding local bundle trivializations
of TGP and VGP . Given the basis {ϵp} for gr, we obtain the local fibers {∂λ, ep} for
TGP → X and {ep} for VGP . If we look at sections

ξ = ξλ∂λ + ξpep, η = ηµ∂µ + ηqeq

of TGP → X, then we see that the coordinate expression of their bracket is

[ξ, η] = (ξµ∂µη
λ − ηµ∂µξ

λ)∂λ + (ξλ∂λη
r − ηλ∂λξ

r + crpqξ
pηq)er. (1.2)
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Given fiber bundles π1 : Y1 → X and π2 : Y2 → X, their fibered product is defined as
the pullback bundle

Y1 ×X Y2 = π∗
1Y2 = π∗

2Y1 = {(y1, y2) : π1(y1) = π2(y2)}

which is of course another fiber bundle over X.
Let πY : TY → Y be the tangent bundle of a fiber bundle π : Y → X. Given

local coordinates (xλ, yi) on Y , the tangent bundle TY is equipped with the holonomic
coordinates (xλ, yi,

.
xλ,

.
yi). The tangent bundle TY → Y has the vertical subbundle

V Y = Ker dπ, consisting of the vectors tangent to the fibers of Y . The vertical tangent
bundle V Y is provided with the holonomic coordinates (xλ, yi,

.
yi) with respect to the

frames {∂i}. The vertical cotangent bundle V ∗Y → Y of the fiber bundle Y → X is
defined as the vector bundle dual of the vertical tangent bundle V Y → Y .

A vector field u on a fiber bundle Y π−→ X is said to be projectable if it projects over
a vector field τ on X, i.e., if it satisfies τ ◦ π = dπ ◦ u. A projectable vector field has
the coordinate expression

u = uλ(xµ)∂λ + ui(xµ, yj)∂i, τ = uλ∂λ.

A projectable vector field u = ui∂i on a fiber bundle Y → X is said to be vertical if it
projects over the zero vector field τ = 0 on X.

A vector field τ = τλ∂λ on the base X can give rise to a projectable vector field on
the total space Y by means of some connection on this fiber bundle. Nevertheless, any
vector field τ on X admits a canonical lift to any tensor bundle, which we will denote
by τ̃ . In particular, the lift of τ onto the tangent bundle is given by

τ̃ = τµ∂µ + ∂ντ
α .xν ∂

∂
.
xα

(1.3)

and the lift of τ onto the cotangent bundle is given by

τ̃ = τµ∂µ − ∂βτ
ν .xν

∂

∂
.
xβ
. (1.4)

The Lie derivative of an exterior form ϕ along a vector field u is denoted by

Luϕ = u⌟ dϕ+ d(u⌟ϕ).

Given the tangent lift ϕ̃ of an exterior form ϕ, we note that

Luϕ = u∗ϕ̃.

Given a differential form ω, we will use the notation

ωλ = ∂λ⌟ω, ωµλ = ∂µ⌟ ∂λ⌟ω.
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1.2. Jet manifolds. The order-k jet manifold JkY of a fiber bundle Y → X consists
of the equivalence classes jkxs, x ∈ X, of sections s of Y , identified by the first k + 1

terms of their Taylor series at the points x ∈ X. The jet manifold JkY is provided with
the adapted coordinates

(xλ, yi, yiλ, . . . , y
i
λk,···λ1

), yiλl···λ1
(jkxs) = ∂λl

· · · ∂λ1s
i(x),

for 0 ≤ l ≤ k.
We will use the following notation for operators on exterior forms on jet manifolds.

The total derivative operator is defined by

dλ = ∂λ + yiλ∂i + yiλµ∂
µ
i + · · · . (1.5)

For instance, dλ(dxµ) = 0 and dλ(dy
i
λl···λ1

) = dyiλλl···λ1
. The horizontal projection h0 is

defined in local coordinates by

h0(dy
i) = yiµdx

µ, h0(dy
i
λ) = yiµλdx

µ,

and similarly for the higher order jet manifolds. The horizontal differential is defined by

dHϕ = dxλ ∧ dλ(ϕ).

The total derivative satisfies the graded Leibniz rule

dλ(ϕ ∧ σ) = dλ(ϕ) ∧ σ + ϕ ∧ dλ(σ), dλ ◦ d = d ◦ dλ,

while the horizontal differential satisfies

dH ◦ dH = 0, h0 ◦ d = dH ◦ h0.

2. Principal connections

Let J1P denote the first jet manifold of a G-principal bundle P → X. Since J1P → P

is an affine bundle modeled over the vector bundle

T ∗X ⊗ V P −→ P,

we can pass to the quotient by the jet prolongation J1RG of the canonical right G-action
on P . This yields the affine bundle

C = J1P/G −→ X,

modeled over the associated vector bundle

C = T ∗X ⊗ VGP −→ X,
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so that there is a canonical vertical splitting

V C ≃ C ×X C.

It follows that J1P → C is itself a principal G-bundle, canonically isomorphic to the
pullback

J1P ≃ PC = C ×X P −→ C.

Now recall that the G-invariant exact sequence

0 −→ VGP ↪→ TGP −→ TX −→ 0 (2.1)

arises by taking the quotient of the standard short exact sequence 0 → V P → TP →
π∗TX → 0 with respect to the G-action. A principal connection on P → X is defined
as a section

A : P −→ J1P

which is G-equivariant in the sense that

J1Rg ◦ A = A ◦Rg (2.2)

for any g ∈ G. Such a section determines a splitting of the exact sequence (2.1). In
local coordinates, a principal connection is represented by a TGP -valued 1-form

A : X −→ T ∗X ⊗ TGP,

A = dxλ ⊗
(
∂λ + Aq

λeq
)
, (2.3)

where eq is a local basis of VGP and Aq
λ are local smooth functions on X.

Condition (2.2) ensures that principal connections on P → X are in one-to-one
correspondence with global sections of the affine bundle C → X. Since affine bundles
always admit global sections, every principal bundle admits a principal connection.

For this reason, C = J1P/G→ X is called the bundle of principal connections on
P . Given a local trivialization of P , the associated bundle coordinates (xλ, aqλ) on C

identify a section A with local functions Aq
λ = aqλ ◦A, which are precisely the coefficients

of the connection form (2.3). In gauge theory, these coefficients are interpreted as gauge
potentials, and we therefore refer to sections A : X → C as gauge potentials.

Suppose a principal connection on P → X is represented by the vertical-valued
1-form

A = (dyi − Ai
λ dx

λ)⊗ ∂i,

where yi denote local fiber coordinates on P and ∂i span the vertical tangent bundle
V P . This form encodes the splitting of TP into horizontal and vertical subspaces: the
terms dyi − Ai

λdx
λ vanish on horizontal vectors, while the coefficients Ai

λ record how
the horizontal lift depends on the base coordinates. Composing A with the natural
isomorphism α : V P ≃ P × gl, we obtain the familiar Lie algebra–valued connection
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1-form
A : P

A−→ T ∗P ⊗P V P
Id⊗α−−−→ T ∗P ⊗ gl.

Thus A is the gl-valued 1-form on P that annihilates horizontal vectors and restricts to
the Maurer–Cartan form on vertical directions.

With respect to a local trivialization (Uζ , zζ) of P , the connection form has the local
expression

A = ψ∗
ζ

(
θl − A

q

λ dx
λ ⊗ ϵq

)
, (2.4)

where θl is the canonical left-invariant gl-valued 1-form on G, {ϵq} is a basis of gl, and
the coefficients Aq

λ are smooth functions on P satisfying the equivariance condition

A
q

λ(pg)(ϵq) = ad(g−1)
(
A

q

λ(p)(ϵq)
)
.

By defining local functions on X via Aq
λ = A

q

λ ◦ zζ over Uζ , we recover the usual local
connection 1-form

Aζ = −Aq
λdx

λ ⊗ ϵq = Aq
λdx

λ ⊗ ϵq, (2.5)

which is just the pull-back z∗ζA of the connection 1-form A over Uζ . Note that these
coefficients agree with those appearing in the expression (2.3) for the splitting of TGP .
It is important to note that, by virture of the natural identification VGP ≃ P ×G gl, the
coefficients Aq

λ admit two interpretations:

• In (2.3) they occur in the VGP -valued 1-form

Aq
λ dx

λ ⊗ eq ∈ Ω1(X)⊗ VGP,

where {eq} denotes the basis of VGP induced from {ϵq};

• In (2.5) they appear in the gl-valued local connection 1-form.

Principal connections behave well under morphisms of bundles. We record two basic
functorial properties.

Fact 2.1 (Pullback). Let P → X be a principal G-bundle and f : Y → X a smooth
map. Then the pullback f ∗P → Y is again a principal G-bundle, and the canonical
morphism fP : f ∗P → P allows one to pull back a connection A on P to a connection
f ∗A on f ∗P . Concretely, the horizontal distribution of f ∗A is defined as the preimage
under dfP of the horizontal distribution of A.

Fact 2.2 (Pushforward). Let P ′ → X and P → X be principal bundles with structure
groups G′ and G, respectively, and let Φ : P ′ → P be a principal bundle morphism
covering IdX and corresponding to a homomorphism G′ → G. If A′ is a principal
connection on P ′, then there exists a unique principal connection A on P such that
dΦ maps horizontal subspaces of A′ onto those of A. In this way, Φ pushes forward
connections from P ′ to P .
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2.1. Curvature. The curvature of a principal connection A (also called the field
strength) is defined as the VGP -valued 2-form on X,

FA : X −→ Λ2T ∗X ⊗ VGP,

FA = 1
2
F r
λµ dx

λ ∧ dxµ ⊗ er. (2.6)

In local coordinates, the coefficients are computed from the commutator of horizontal
lifts:

F r
λµ =

[
∂λ + Ap

λep, ∂µ + Aq
µeq

]r
= ∂λA

r
µ − ∂µA

r
λ + crpq A

p
λA

q
µ, (2.7)

where crpq are the structure constants of gl. Equivalently, if we regard the local connection
form as the VGP -valued 1-form

A = Aq
λ dx

λ ⊗ eq,

then the curvature takes the familiar shape

FA = dA+ A ∧ A,

with the wedge product understood using the Lie bracket on VGP . It is important to
distinguish FA from two related notions:

1. Curvature of affine connections: for a connection on a vector bundle, the curvature
is a 2-form with values in End(E). Here, FA is not an endomorphism-valued form
but rather a section of Λ2T ∗X⊗VGP , reflecting the fact that a principal connection
splits the sequence (2.1) and its curvature measures the non-integrability of the
corresponding horizontal distribution.

2. Lie algebra–valued curvature form: composing with the natural isomorphism
α : VGP

≃−→ P ×G gl gives the gl-valued curvature 2-form on P

Ω = dA + 1
2
[A,A] ∈ Λ2T ∗P ⊗ gl,

where A is the connection 1-form (2.4) on P . These two curvatures are related by
the rule

z∗ζΩ = −ψζ(FA)

on any local trivialization (Uζ , ψζ).

In practice, one often passes to the local gl-valued 2-form

ψζ(FA) = dAζ +
1
2
[Aζ , Aζ ],

where Aζ = Aq
λ dx

λ ⊗ ϵq is the local connection 1-form (2.5). This form has the same
component expression as (2.6), but written with respect to the Lie algebra basis {ϵr}
instead of the induced vertical basis {er}. Thus the curvature can be viewed either as a
VGP -valued 2-form on X or, after trivialization, as the familiar gl-valued field strength.
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2.2. Associated bundles. Let Y = (P × V )/G→ X be the fiber bundle associated
with the principal G-bundle P → X, where G acts on the typical fiber V on the left.
We call such a bundle a P -associated bundle. By definition, the quotient is formed by
identifying

(p, v) ∼ (pg, g−1v), p ∈ P, g ∈ G, v ∈ V.

For each p ∈ P , the map

[p] : V → Yπ(p), [p](v) = (p, v) ·G,

is a linear isomorphism onto the fiber over π(p) ∈ X, and satisfies the compatibility
condition

[p](v) = [pg](g−1v).

Every principal connection on P → X canonically induces a connection on any P -
associated bundle Y . Indeed, given a connection A on P with horizontal distribution
H ⊂ TP , the differential of the projection

P × V −→ (P × V )/G = Y

sends H×V to a horizontal distribution in TY , thereby defining a connection on Y → X.
We will call this induced connection the associated connection.

If Y is in fact a vector bundle associated to a representation ρ : G→ Aut(V ), then
the induced connection admits the local form

A = dxλ ⊗
(
∂λ − Ap

λ I
i
p ∂i

)
,

where {Ip} are the infinitesimal generators of the representation dρ : gl → End(V ).
Explicitly, if {ϵp} is a basis of gl, then Ip = dρ(ϵp) describes how ϵp acts on V . These
matrices encode the geometric action of the structure group on the fiber. In this case,
the curvature of this associated connection reads

F = −1
2
F p
λµ I

i
p dx

λ ∧ dxµ ⊗ ∂i,

with the same local coefficients F p
λµ as in (2.6).

In particular, applying this construction to the adjoint representation of G yields
the gauge algebra bundle

VGP ≃ P ×G gl −→ X.

The induced connection on VGP is a linear connection, whose covariant differential of a
section ξ = ξpep is

∇Aξ : X → T ∗X ⊗ VGP,

∇Aξ =
(
∂λξ

r + crpqA
p
λ ξ

q
)
dxλ ⊗ er. (2.8)
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For a vector field u on X, the covariant derivative takes the form

∇A
u ξ = u⌟∇Aξ = [u⌟A, ξ ],

where A is the TGP -valued 1-form (2.3). In particular,

∇A
∂λ
eq = crpqA

p
λer.

Finally, this covariant derivative is compatible with the Lie bracket on sections of VGP ,
in the sense that

∇A
u [ ξ, η ] = [∇A

u ξ, η ] + [ ξ, ∇A
u η ],

for any vector field u and sections ξ, η of VGP → X.

2.3. The Nijenhuis differential. Given a smooth manifold M , let Or(M) denote
the space of differential r-forms on M . The direct sum

O(M) =
⊕
r≥0

Or(M)

is the Z-graded exterior algebra with respect to the wedge product ∧. The exterior
differential acts by

d : Or(M) → Or+1(M),

dϕ =
1

r!
∂µϕλ1···λr dz

µ ∧ dzλ1 ∧ · · · ∧ dzλr .

The space of tangent-valued forms O∗(M)⊗ T (M) carries a natural graded Lie bracket,
the Frölicher–Nijenhuis bracket (FN bracket), which extends the Lie bracket of vector
fields:

[·, ·]FN : Or(M)⊗ T (M)×Os(M)⊗ T (M) −→ Or+s(M)⊗ T (M) (2.9)

which is determined on decomposable elements by

[α⊗ u, β ⊗ v]FN = (α ∧ β)⊗ [u, v] + (α ∧ Luβ)⊗ v − (Lvα ∧ β)⊗ u

+ (−1)r(dα ∧ u⌟ β)⊗ v + (−1)r(v⌟α ∧ dβ)⊗ u,

for α ∈ Or(M), β ∈ Os(M) and u, v ∈ T (M). For r = s = 0 this reduces to the usual
Lie bracket of vector fields.

Now let P → X be a principal G-bundle. The FN bracket on O∗(P ) ⊗ T (P )

is G-equivariant with respect to the canonical right action RG, meaning that [·, ·]FN

commutes with the pullback action of Rg for all g ∈ G. Consequently, it descends to an
induced FN bracket on the associated bundle TGP = (TP )/G→ X.

Let A ∈ O1(X) ⊗ TGP be the local connection form of a principal connection, as
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in (2.5). The associated Nijenhuis differential is defined by

dA : Or(X)⊗ TGP −→ Or+1(X)⊗ VGP,

dAϕ = [A, ϕ]FN , (2.10)

for ϕ ∈ Or(X) ⊗ TGP . On the vertical subbundle VGP , this reduces to the covariant
differential ∇A introduced earlier in (2.8), i.e.

dAξ = ∇Aξ, ξ ∈ Γ(VGP ).

Equivalently, in local form,
∇Aξ = dξ + [A, ξ],

where A is the vertical connection 1-form (2.3).
For decomposable elements ϕ = α ⊗ ξ with α ∈ Or(X) and ξ ∈ VGP , one obtains

the graded Leibniz rule

dA(α⊗ ξ) = dα⊗ ξ + (−1)r α ∧∇Aξ,

and the extension to general tensors follows by linearity.

Finally, the curvature of A can be expressed in terms of dA and the FN bracket as

FA = 1
2
dAA+ 1

2
[A,A]FN ∈ O2(X)⊗ VGP. (2.11)

This coincides with the usual definition FA = dA+ 1
2
[A,A] when restricted to the vertical

part.

2.4. The bundle of principal connections. We now turn to vector fields and
connections on the bundle of principal connections C = J1P/G→ X which parametrizes
all principal connections on P → X. In particular, we will define a canonical connection
on the pullback G-principal bundle PC = C ×X P → C.

Let J1P be the first jet bundle of P , with adapted coordinates (xλ, yi, yiλ). There is
a canonical bundle morphism

θ : J1P ×P TP −→ V P,

which assigns to a tangent vector its vertical component relative to a chosen 1-jet of P .
Passing to the quotient by G, this descends to a bundle morphism over X

θ : C ×X TGP −→ VGP,

θ(∂λ) = −apλep, θ(ep) = ep, (2.12)
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where the coordinates apλ describe a connection in C. Moreover, since

VG(C ×X P ) = C ×X VGP, TG(C ×X P ) = TC ×X TGP,

the Atiyah exact sequence for the pullback bundle PC → C takes the form

0 −→ C ×X VGP ↪→ TC ×X TGP −→ TC −→ 0. (2.13)

The morphism (2.12) provides a canonical splitting of this exact sequence: it projects
tangent vectors in TC×X TGP onto their vertical component in C×X VGP , and thereby
determines a complementary horizontal subspace.

Explicitly, this yields a horizontal splitting

TC ×X TGP −→ C ×X TGP −→ C ×X VGP,

and hence a canonical (but generally non-flat) principal connection

A ∈ O1(C)⊗ TG(C ×X P )

on PC → C, given in local form by

A : TC → TC ×X TGP,

A = dxλ ⊗ (∂λ + apλep) + darλ ⊗ ∂λr .

Thus PC is canonically equipped with the connection A.

Consequently, the vector bundle C×XVGP → C inherits a canonical linear connection
with associated covariant differential given by

∂λ⌟∇Aeq = crpqa
p
λer, ∂λr ⌟∇Aeq = 0. (2.14)

By definition (2.11), the curvature 2-form FA ∈ O2(C)⊗ VGP is

FA = 1
2
dAA+ 1

2
[A,A]FN

=
(
darµ ∧ dxµ + 1

2
crpqa

p
λa

q
µdx

λ ∧ dxµ
)
⊗ er. (2.15)

We note the following: if A : X → C is a principal connection on P → X, then the
curvature of A is exactly the pullback FA = A∗FA.

Example 2.3 (Trivial principal bundle). Let P = X × R → X be the trivial principal
bundle with abelian structure group (R,+). Then C = T ∗X → X is the affine cotangent
bundle, and principal connections on P correspond exactly to 1-forms on X.

Choose local coordinates (xλ) on X and (yi) on the fiber. Then J1P has local
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coordinates (xλ, yi,
.
xλ), and the right action by t ∈ R is

(x, y,
.
xλ) · t = (x, y + t,

.
xλ).

Hence the G-invariants are (xλ,
.
xλ), so

C = J1P/G ∼= {(xλ, aλ)}, aλ =
.
xλ.

Identifying C with T ∗X via

Ψ : C → T ∗X

Ψ(x, a) = (x,
.
xλ = aλ),

then the tautological 1-form on T ∗X, .
xλ dx

λ, pulls back to

Ψ∗(
.
xλ dx

λ) = aλ dx
λ.

On J1P ×P TP the canonical morphism θ takes the vertical part of a tangent vector
relative to a chosen 1-jet. In coordinates we have

θ(∂λ) = − .
xλ ∂y, θ(∂y) = ∂y.

Taking the quotient by G and using aλ =
.
xλ yields

θ(∂λ) = −aλ e, θ(e) = e,

where e is the class of ∂y in VGP ≃ X × R, in agreement with (2.12).

Take the local coordinates (xλ, aµ; y) on PC = C ×X P . Using θ to project vertical
parts defines the horizontal lifts

(∂λ)
H = ∂λ + aλ e, (∂µ)H = ∂µ =

∂

∂aµ
.

Hence the canonical principal connection A ∈ O1(C)⊗ TG(C ×X P ) is

A = dxλ ⊗ (∂λ + aλe) + daµ ⊗ ∂µ

with vertical component (projection to VGP ) given by the universal potential

Acan = aλ dx
λ ⊗ e = Ψ∗θ ⊗ e.

Now we will compute the Nijenhuis differential dA and the curvature FA. Since G is
abelian, the structure constants vanish and ad = 0. From (2.8) (with crpq = 0) we get
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∇Ae = 0, and therefore for any scalar form f ,

dA(f e) = df ⊗ e.

Moreover [Acan, Acan]FN = 0. Thus the curvature (2.15) becomes

FA = dAAcan = d(aλ dx
λ)⊗ e = (daλ ∧ dxλ)⊗ e

= d
.
xλ ∧ dxλ ⊗ e = dθ ⊗ e.

Under the identification C ≃ T ∗X this is precisely the canonical symplectic form dθ.

We can relate the connection to the Lie-algebra valued form. Composing with
α : VGP → gl ≃ R, α(e) = ϵ, the gl-valued connection on PC is

A = dy − aλ dx
λ, ΩA = dA = − daλ ∧ dxλ.

Pulling back by the identity section s : C → PC , s(x, a) = (x, a; 0), gives

s∗A = − aλ dx
λ = −Ψ∗θ, s∗ΩA = − dθ,

so that α(FA) = −ΩA, consistent with the general sign relation discussed earlier.

To summarize, we have:

θ =
.
xλ dx

λ,

dA = d,

FA = d
.
xλ ∧ dxλ = dθ ∈ Λ2T ∗X.

Thus A reproduces the tautological 1-form θ on T ∗X, and its curvature FA is the
canonical symplectic form dθ. This example illustrates that the bundle C → X in a
sense generalizes the cotangent bundle: just as T ∗X carries a canonical symplectic 2-form
dθ, the bundle of principal connections carries the canonical VGP -valued 2-form (2.15).
In particular, for a vector field u on X, the canonical lift ũ to T ∗X is determined by

ũ⌟ dθ = d(u⌟ θ).

In gauge theory this equation is generalized by means of the canonical curvature FA. ⋄

Let ξ = τλ∂λ + ξ
pep be a section of the fiber bundle TGP → X which projects onto a

vector field τ on X. One can think of ξ as being a generator of a 1-parameter group of
general gauge transformations of the principal bundle P → X. Using (2.12) we obtain a
morphism over X

ξ⌟ θ : C → VGP

which may be regarded as a section of VG(C ×X P ) → C. Then the equation

ξC⌟FA = dA(ξ⌟ θ)
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uniquely determines a vector field ξC on C which also projects to τ . Let us expand this
relation in coordinates. Write

ξC = τλ∂λ + urλ∂
λ
r

for some coefficients urλ to be determined. Contracting FA from (2.15) with ξC gives

ξC⌟FA =
(
τµdarµ + urµdx

µ + crpqa
p
µτ

µdxλaqλ

)
⊗ er.

On the other hand,

dA(ξ⌟ θ) =
(
∂λξ

r + crpqa
p
λξ

q − arµ∂λτ
µ
)
dxλ ⊗ er.

Equating coefficients yields

urλ = ∂λξ
r + crpqa

p
λξ

q − arµ∂λτ
µ,

and therefore

ξC = τλ∂λ + urλ∂
λ
r , with

urλ = ∂λξ
r + crpqa

p
λξ

q − arµ∂λτ
µ. (2.16)

The vector field ξC is the generator of the associated gauge transformations of the bundle
of principal connections C. In the special case ξ ∈ VGP (i.e. τ = 0), this reduces to the
vertical vector field

ξC = urλ∂
λ
r , urλ = ∂λξ

r + crpqa
p
λξ

q.

Since V C = C ×X T ∗X ⊗ VGP ⊂ TC, we can equivalently write

ξC = ∇Aξ : C → V C.

Example 2.4. Let A be a principal connection on P → X. For any vector field τ on
X, consider the section

ξ = τ⌟A : X → TGP,

ξ = τλ∂λ + Ap
λτ

λep.

The construction above yields the induced vector field (2.16) on C,

τ̃A = τλ∂λ + urλ∂
λ
r ,

urλ = ∂λA
r
µτ

µ + crpqa
p
λA

q
µτ

µ − (arµ − Ar
µ)∂λτ

µ.

This example shows that, once a background principal connection A is chosen, vector
fields on X induce induce vector fields on the bundle of connections C in a natural
way. ⋄

Returning to the curvature FA, we note that it can be viewed in a slightly different
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way. Namely, there is a canonical horizontal VGP -valued 2-form on J1C,

F = 1
2
F r

λµ dx
λ ∧ dxµ ⊗ er,

F r
λµ = arλµ − arµλ + crpq a

p
λa

q
µ,

where (xλ, apµ, a
p
λµ) are adapted coordinates on J1C. Now, for any principal connection

A : X → C, we let J1A : X → J1C denote the first jet prolongation, i.e., J1A(x) = j1xA

is the 1-jet of A at x. Evaluating F on this jet recovers the horizontal part of the
curvature of A:

F ◦ J1A = h0(FA),

i.e. the components F r
λµ(j

1
xA) are exactly the components of FA expressed as a horizontal

2-form on X. Moreover, note that the map

F
2

: J1C −→ C ×X Λ2T ∗X ⊗ VGP

is an affine surjection over C. To see this: J1C → C is an affine bundle modeled on
the vector bundle T ∗X ⊗C V C, and in coordinates the dependence of F r

λµ on the fiber
coordinates arλµ is affine (indeed linear) and the remaining terms crpqa

p
λa

q
µ depend only

on the base coordinates (xλ, asν) on C. Hence, for fixed (x, a) ∈ C the map

(arλµ) 7−→ F r
λµ

is an affine map from the fiber J1C|x onto the space Λ2T ∗
xX⊗VGPx. In fact, this map is

an affine surjection, because the antisymmetric part of the arλµ-variables may be chosen
arbitrarily to realize any target 2-form. Thus F/2 is an affine surjection over C.

Therefore the kernel C+ = KerF is an affine subbundle of J1C → C, and we obtain
a canonical splitting over C:

J1C = C+ ⊕ C− = C+ ⊕ (C ×X Λ2T ∗X ⊗ VGP ). (2.17)

The corresponding projections are pr2 = F/2, and pr1 = S given by

pr1 = S : J1C → C+

Sr
λµ =

1

2
(arλµ + arµλ − crpqa

p
λa

q
µ),

which extracts the symmetric (in λ, µ) part corrected by the quadratic term. Finally, if
Γ : C → J1C is a connection on the bundle of principal connections C → X, then S ◦ Γ
is a C+-valued connection on C → X, meaning it satisfies the condition F(S ◦ Γ) = 0.
Writing this condition out in local coordinates yields

F r
λµ

(
(S ◦ Γ)(x)

)
= (S ◦ Γ)rλµ − (S ◦ Γ)rµλ + crpqa

p
λa

q
µ = 0. (2.18)

In words: the antisymmetric part of the second-order jet coordinates of S◦Γ is determined
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by the quadratic term −crpqa
p
λa

q
µ, ensuring that S ◦ Γ takes values in the kernel of F .

3. Gauge conservation laws

Conservation laws in the gauge theory of principal connections exhibit the following
fundamental features.

• In general, Noether conservation laws and Noether currents depend on gauge
parameters, but this is not the case in an abelian gauge model (principal bundle
with abelian structure group).

• Noether currents reduce to superpotentials because generators of gauge transfor-
mations depend on derivatives of gauge parameters.

• An energy-momentum conservation law implies the gauge invariance of a La-
grangian.

3.1. Lagrangian field theory. We will discuss Lagrangians, Euler–Lagrange operators,
and conserved currents, following [T94, NS96, CVB03, H17]. The Lagrangian plays an
important role for several reasons:

• The Euler–Lagrange operator EL associated with a Lagrangian L governs the field
equations (its kernel defines solutions).

• Symmetry currents are obtained from invariance properties of L.

• Conservation laws arise when symmetry currents interact with the Euler–Lagrange
equations.

We follow the geometric formulation [CVB03] of classical field theory, where fields are
represented by sections of a configuration bundle. For example, matter fields, gauge
fields, gravitational fields all fit into this framework. We do not specify the type of
fields, instead using yi to denote all of them. The finite-dimensional configuration space
of fields is the first order jet manifold J1Y of Y → X, with coordinates (xλ, yi, yiλ), cf.
[CVB03].

A first-order Lagrangian is defined as a horizontal density on J1Y ,

L : J1Y → ΛnT ∗X

L = L(xλ, yi, yiλ)ω ω = dx1 ∧ · · · ∧ dxn.

where n = dimX. The function L(xλ, yi, yiλ) is any smooth real-valued function on the
first jet manifold J1Y . By definition L depends only on (xλ, yi, yiλ), and not any higher
jets. The associated Lagrangian is the horizontal n-form

L = Lω, ω = dx1 ∧ · · · ∧ dxn.

In applications one often imposes further conditions on L, such as:
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• Invariance: L may be required to be covariant under diffeomorphisms of X or
gauge transformations of Y .

• Regularity: non-degeneracy of the Hessian

∂2L
∂yiλ∂y

j
µ

is often important, especially in the context of Hamiltonian gauge theory.

Let u = uλ(x, y)∂λ + ui(x, y)∂i be a projectable vector field on Y → X. Its
prolongation to the jet bundle is

J1u = uλ∂λ + ui∂i + (dλu
i − yiµ∂λu

µ)∂λi .

The Lie derivative of L along J1u is then

LJ1uL =
[
∂λu

λ L+ (uλ∂λ + ui∂i + (dλu
i − yiµ∂λu

µ)∂λi )L
]
ω. (3.1)

The first variational formula provides a canonical decomposition of this Lie derivative,
separating the Euler–Lagrange term from a horizontally exact term:

LJ1uL = uV ⌟ EL + dHh0(u⌟HL)

= (ui − yiµu
µ)(∂i − dλ∂

λ
i )Lω − dλ

[
πλ
i (u

µyiµ − ui)− uλL
]
ω (3.2)

where uV = (u⌟ θi)∂i is the vertical part of u relative to the canonical splitting

uλ∂λ + ui∂i = uλ(∂λ + yiλ∂i) + (ui − uλyiλ)∂i.

Recall that we defined the operators dλ, h0, and dH around (1.5).
The Euler–Lagrange operator associated to L is

EL : J2Y → T ∗Y ∧ ΛnT ∗X,

EL = (∂iL − dλπ
λ
i ) θ

i ∧ ω, (3.3)

where we set πλ
i = ∂λi L for brevity. The associated Poincaré–Cartan form is

HL : J1Y → T ∗Y ∧ Λn−1T ∗X,

HL = L+ πλ
i θ

i ∧ ωλ = πλ
i dy

i ∧ ωλ + (L − πλ
i y

i
λ)ω. (3.4)

Here ωλ = ∂λ⌟ω is the contraction of ω with ∂λ.

Remark 3.1 (Notation). The shorthand πλ
i = ∂λi L denotes the partial derivative of

the Lagrangian function L with respect to the jet coordinate yiλ. Thus, πλ
i are the

generalized momenta conjugate to the field components yi, and they play a central role



20

both in the Euler–Lagrange operator (3.3) and in the definition of the Poincaré–Cartan
form (3.4). ⋄

3.2. Conservation laws. The kernel of the Euler-Lagrange operator EL is defined in
local coordinates by the relations

(∂i − dλ∂
λ
i )L = 0. (3.5)

These equations define the system of second-order Euler-Lagrange equations. Classical
solutions of these equations are sections s of the fiber bundle X → Y whose second
order jet prolongations J2s satisfy (3.5). Expanded in more detail, these equations are

∂iL ◦ s− (∂λ + ∂λs
j∂j + ∂λ∂µs

j∂µj )∂
λ
i L ◦ s = 0. (3.6)

The first variational formula (3.2) provides the standard procedure for studying the
differential conservation laws in Lagrangian field theory. Let u be a projectable vector
field on a fiber bundle Y → X, treated as the generator of a local 1-parameter group of
gauge transformations. Introduce the Euler–Lagrange components

δiL = ∂iL − dλπ
λ
i = (∂i − dλ∂

λ
i )L.

Substituting this into (3.6) gives the decomposition

LJ1uL = (ui − yiµu
µ) δi(L)ω − dλIλ ω, (3.7)

where
Iλ = πλ

i (u
µyiµ − ui)− uλL

are the components of the symmetry current I = Iλωλ associated to u. We now
introduce the weak equality Φ ≈ Ψ to denote equality modulo the Euler–Lagrange
expressions δi(L) and their total derivatives (i.e. equality on the shell Ker EL). From
(3.7) we obtain the weak identity

LJ1uL ≈ − dλIλ ω,

and then, expanding the Lie derivative using the first variational formula (3.5),

∂λu
λL+

[
uλ∂λ + ui∂i + (dλu

i − yiµ∂λu
µ)∂λi

]
L ≈ −dλ

[
πλ
i (u

µyiµ − ui)− uλL
]
.

Suppose now that the Lie derivative LJ1uL vanishes, i.e. the Lagrangian L is invariant
under gauge transformations generated by the vector field u. Then we obtain the weak
conservation law

0 ≈ −dλ[πλ
i (u

µyiµ − ui)− uλL]
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for the symmetry current

I = Iλωλ, Iλ = πλ
i (u

µyiµ − ui − uλL), (3.8)

along the vector field u. Moreover, LJ1uL = 0 implies the weak identity dλIλ ≈ 0, and
then pulling back along a solution s (so that δi(L) ◦ J2s = 0) yields the differential
conservation law

∂λ(Iλ ◦ s) = 0 (3.9)

on solutions of the Euler-Lagrange equations (3.5). This differential conservation law
implies the integral conservation law∫

∂N

s∗I = 0, (3.10)

where N is a compact n-dimensional submanifold of X with boundary ∂N .
It may happen that a symmetry current I (3.8) can be put into the form

I = W + dHU = (W λ + dµU
µλ)ωλ. (3.11)

where the term W contains only the variational derivatives δiL = (∂i − dλ∂
λ
i )L, i.e.,

W ≈ 0, and
U = Uµλωµλ : J1Y → Λn−2T ∗X

is a horizontal (n− 2)-form on J1Y → X. In this situation one says that I reduces to
the superpotential U . Geometrically, this decomposition isolates two contributions to
the current: W , which vanishes once the Euler–Lagrange equations are imposed (so it
measures the failure of the field to be on-shell), and dHU , which is a total divergence.
Physically, the total divergence dHU means that the corresponding conserved quantity
is determined entirely by a boundary term (the superpotential). Such decompositions
occur in gauge theories, where Noether currents are not local densities but are rather
“trivial” up to boundary contributions.

On the kernel, combining the Euler-Lagrange equations δiL = 0 yields the funda-
mental equation

I − dHU = W (δiL) = 0. (3.12)

Later we will see that, in the abelian gauge theory of electromagnetism, (3.12) repro-
duces Maxwell’s equations. If a current I reduces to a superpotential, then the local
conservation law (3.9) and its integral version (3.10) become automatic consequences of
the decomposition. At the same time, the superpotential form (3.11) yields the integral
relation ∫

Nn−1

s∗I =

∫
∂Nn−1

s∗U, (3.13)

which expresses conservation in terms of flux through the boundary. This may be viewed
as an integral reformulation of the Euler–Lagrange equations. Such superpotentials are
a recurring feature in both gauge theory and gravitation, where symmetry generators
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depend on derivatives of the gauge parameters.
Now let us consider the situation with background fields. We will show how con-

servation laws can fail if these fields do not lie in the kernel (3.5). Suppose we have a
fiber bundle Y → X with coordinates (xλ, yi) for dynamical fields, and a second bundle
Y ′ → X with coordinates (xλ, ya) for background fields, which are fixed by sections

yb = ϕb(x), ybλ = ∂λϕ
b(x).

The total configuration space is Ytot = Y ×X Y
′, and a Lagrangian L is defined on J1Ytot.

A projectable vector field u on Ytot projects onto Y ′ because gauge transformations of
background fields do not depend on dynamical ones. In coordinates it has the form

u = uλ(xµ)∂λ + ua(xµ, yb)∂a + ui(xµ, yb, yj)∂i. (3.14)

Substituting (3.14) into (3.2) yields the first variational formula in the presence of
background fields,

∂λu
λL+

[
uλ∂λ + ua∂a + ui∂i + (dλu

a − yaµ∂λu
µ)∂λa + (dλu

i − yiµ∂λu
µ)∂λi

]
L

= (ua − yaλu
λ)∂aL+ πλ

adλ(u
a − yaµu

µ) + (ui − yiλu
λ)δiL

− dλ[π
λ
i (u

µyiµ − ui)− uλL]. (3.15)

Then by dropping the term (ui − yiλu
λ)δiL on the right-hand side of (3.15), we get the

weak identity

∂λu
λL+

[
uλ∂λ + ua∂a + ui∂i + (dλu

a − yaµ∂λu
µ)∂λa + (dλu

i − yiµ∂λu
µ)∂λi

]
L

≈ (ua − yaλu
λ)∂aL+ πλ

adλ(u
a − yaµu

µ)− dλ[π
λ
i (u

µyiµ − ui)− uλL]

which holds on the kernel (3.5). If a total Lagrangian L is invariant under gauge
transformations of the product Ytot, we obtain a weak identity in the presence of
background fields,

(ua − yaµu
µ)∂aL+ πλ

adλ(u
a − yaµu

µ) ≈ dλ[π
λ
i (u

µyiµ − ui)− uλL]. (3.16)

Thus, when background fields fail to satisfy the kernel condition (3.5), the left-hand
side of (3.16) does not vanish. In other words, the would-be conserved current acquires
additional source terms involving the background fields. Physically this expresses the
fact that external backgrounds can inject or absorb energy-momentum or charge, and
so strict conservation of the Noether current is violated.

3.3. Gauge invariance. Let P → X be a G-principal bundle. In a gauge model with
symmetry group G, the gauge potentials are identified with principal connections on P ,
i.e., with global sections of the bundle of principal connections C → X, while matter
fields are represented by global sections of a P -associated vector bundle Y , called the
matter bundle. Thus the total configuration space of a gauge model (with unbroken
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symmetries) is the product bundle

J1Ytot = J1Y ×X J1C → X.

In gauge theory, different types of gauge transformations are considered. In the most
general terms, a gauge transformation of a principal bundle P is an automorphism ΦP

that commutes with the right G-action, i.e.,

Rg ◦ ΦP = ΦP ◦Rg

for every g ∈ G. Such an automorphism of P induces a corresponding automorphism of
any P -associated bundle Y = (P × V )/G,

ΦY : (P × V )/G→ (ΦP (P )× V )/G

(p, v) ·G 7→ (ΦP (p), v) ·G,

for p ∈ P , v ∈ V . Likewise, an automorphism of P determines an induced automorphism

ΦC : J1P/G→ J1ΦP (J
1P )/G (3.17)

of the bundle C = J1P/G of principal connections.
To derive Noether conservation laws we restrict attention to vertical automorphisms

of P , which we call gauge transformations. Every such gauge transformation is given by

ΦP (p) = pf(p), p ∈ P, (3.18)

where f : P → G is a G-equivariant function satisfying

f(pg) = g−1f(p)g, p ∈ P, g ∈ G.

This form amounts to the fact that vertical automorphisms act only along the fibers
of P , and that any such automorphism can be described by multiplying p ∈ P on the
right by a group element that depends smoothly on p.

There is a natural one-to-one correspondence between these G-equivariant functions
f : P → G and the global sections of the group bundle PG = (P ×G)/G whose typical
fiber is G, acted upon by conjugation (the adjoint representation). The group bundle
PG acts fiberwise on any P -associated bundle Y by

PG ×X Y → Y

((p, g) ·G, (p, v) ·G) 7→ (p, gv) ·G,

for g ∈ G, v ∈ V . Thus, a gauge transformation ΦP defined by ΦP (p) = pf(p)

corresponds to the global section s : X → PG given by x 7→ (p, f(p)) ·G for any p ∈ Px.
Hence the gauge group Gau(P ) of vertical automorphisms of P → X (under composition)
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is canonically isomorphic to the group of global sections of the group bundle PG.
In order to understand the structure of the gauge group, it is useful to restrict

attention to certain subgroups. Here we will focus on one-parameter subgroups generated
by G-invariant vertical vector fields ξ on P , called the principal vector fields. There is a
natural one-to-one correspondence between principal vector fields on P and sections of
the gauge algebra bundle VGP → X, so we may write

ξ = ξp(x)ep, ξ ∈ Γ(VGP ),

where {ep} is a local basis of g and the functions ξp(x) are called the gauge parameters.
The adjoint action of a principal vector field ξ0 on another field ξ is given by the Lie
bracket

ξ0 : VGP → VGP

ξ 7→ [ξ0, ξ] = cprq ξ
r
0 ξ

q ep,

where cprq are the structure constants of g. In terms of gauge parameters, this leads to
the transformation law

ξp 7→ − cprq ξ
r
0 ξ

q. (3.19)

by the coadjoint representation. Given a principal vector field ξ on P , there is an induced
principal vector field ξY on any P -associated vector bundle Y → X, corresponding to
the infinitesimal action of the one-parameter subgroup ⟨ΦY ⟩ of gauge transformations
on Y . In local coordinates it is

ξY = ξpI ip∂i,

where the Ip are vectors representing the Lie algebra g in the chosen G-module V , i.e. the
generators of the group action on the typical fiber V of Y . Concretely, if ρ : G→ GL(V ),
then Ip = dρ(ep) ∈ gl(V ). Similarly, the principal vector field on the bundle of principal
connections C corresponding to the infinitesimal gauge action is

ξC =
(
∂µξ

r + crqp a
q
µ ξ

p
)
∂µr . (3.20)

Thus, the combined principal vector field on the product C ×X Y is

ξY C =
(
∂µξ

r + crqpa
q
µξ

p
)
∂µr + ξpI ip∂i. (3.21)

Remark 3.2 (Collective index notation). For brevity, we introduce a collective index
B so that

uBµ
p ∂B = δrp∂

µ
r , uBp ∂B = crqpa

q
µ∂

µ
r + I ip∂i.

With this notation we may rewrite

ξY C = (uBµ
p ∂µξ

p + uBp ξ
p)∂B.

⋄
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A Lagrangian L on the configuration space J1Ytot is said to be gauge-invariant if
the identity

LJ1ξY C
L = 0

holds for every principal vector field ξ on P . In this case, the first variational formula
(3.2) yields the identity

0 = (uBp ξ
p + uBµ

p ∂µξ
p)δBL+ dλ[(u

B
p ξ

p + uBµ
p ∂µξ

p)πλ
B] (3.22)

where δBL are the variational derivatives of L and the total derivative operator (1.5) is
given by

dλ = ∂λ + apλµ∂
µ
p + yiλ∂i.

The equation (3.22) is equivalent to the system of equations

(i) uBp δBL+ dµ(u
B
p π

µ
B) = 0,

(ii) uBµ
p δBL+ dλ(u

Bµ
p πλ

B) + uBp π
µ
B = 0,

(iii) uBλ
p πµ

B + uBµ
p πλ

B = 0.

These three conditions characterize the gauge invariance of a Lagrangian.

Let us specialize to the case of a Lagrangian

L : J1C → ΛnT ∗X,

where C is the bundle of principal connections, for free gauge fields, meaning a Lagrangian
depending only on the gauge potentials aqµ and their first derivatives, without coupling
to additional matter fields. In this case, the conditions (i)–(iii) become

(i) crpq
(
apµ∂

µ
rL+ apλµ∂

λµ
r L

)
= 0,

(ii) ∂µqL+ crpqa
p
λ∂

µλ
r L = 0,

(iii) ∂µλp L+ ∂λµp L = 0.

We utilize the canonical splitting (2.17) of the jet manifold J1C into symmetric and
antisymmetric parts:

arλµ = Sr
λµ +

1
2
F r

λµ,

where Sr
λµ is symmetric and F r

λµ is antisymmetric in (λ, µ). Introducing coordinates
(aqµ,Sr

µλ,F r
µλ), the equations (ii) and (iii) simplify as follows. For (iii), since ∂µλp L denotes

differentiation with respect to apµλ, decomposing into symmetric and antisymmetric parts
gives

∂µλp L =
∂L
∂Sp

µλ

+
1

2

∂L
∂Fp

µλ

.
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Equation (iii) requires symmetry under (µ, λ), but the antisymmetric part already
cancels. Therefore the condition (iii) is equivalent to

∂L
∂Sr

µλ

= 0. (3.23)

For (ii), we will show that this simplifies to the identity

∂µq a
q
µ = 0, (3.24)

which expresses the dependence of L solely through the field strength F .

Starting from (ii)
∂µqL+ crpqa

p
λ∂

µλ
r L = 0,

we use the canonical splitting

arλµ = Sr
λµ +

1
2
F r

λµ,

so that differentiation with respect to arµλ decomposes as

∂µλr L =
∂L
∂Sr

µλ

+
1

2

∂L
∂F r

µλ

.

By (iii) we have
∂L
∂Sr

µλ

= 0, hence

∂µλr L =
1

2

∂L
∂F r

µλ

.

Substituting into (ii) gives

∂µqL+ 1
2
crpqa

p
λ

∂L
∂F r

µλ

= 0. (3.25)

Now using
F r

αβ = arαβ − arβα + crsta
s
αa

t
β,

we find
∂F r

αβ

∂aqµ
= crqt δ

µ
α a

t
β + crsq a

s
α δ

µ
β .

Hence the chain rule yields

∂µqL =
∂L
∂F r

αβ

∂F r
αβ

∂aqµ
= crqt a

t
β

∂L
∂F r

µβ

+ crsq a
s
α

∂L
∂F r

αµ

.

In the second sum rename α ↔ β and s↔ t; then use the antisymmetry
∂L
∂F r

αµ

= − ∂L
∂F r

µα
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to obtain
∂µqL =

(
crqt − crtq

)
atβ

∂L
∂F r

µβ

.

Since the structure constants are antisymmetric in the lower indices, crqt = −crtq, this
simplifies to

∂µqL = 2crqt a
t
β

∂L
∂F r

µβ

.

Combining this with (3.25) yields (3.24). In essence, (iii) kills the symmetric dependence
on second jets, and (ii) then forces any remaining first-order dependence of L on the
variables aqµ to appear only through the antisymmetric combination F r

λµ. This is the
algebraic underpinning of the heuristic “gauge invariance implies dependence only on
the curvature.”

A glance at the equations (3.23) and (3.24) shows that the gauge-invariant Lagrangian
L : J1C → ΛnT ∗X factorizes through the field strength F of gauge potentials, i.e.,

L = L ◦ F : J1C → C− → ΛnT ∗X. (3.26)

Using this, the equation (i) can be written as

crpqF
p
λµ

∂L
∂F r

λµ

= 0,

which is an equivalent way of formulating the gauge invariance of the Lagrangian L.

3.4. Yang-Mills Lagrangian. We discuss the Yang-Mills Lagrangian LYM of gauge
potentials on the configuration space J1C in the presence of a background metric g on
the base X. It is given by

LYM =
1

4ε2
aGpqg

λµgβνFp
λβF

q
µν

√
| det(gµν)|ω, (3.27)

where aG is a nondegenerate G-invariant metric in the Lie algebra gr and ε is a coupling
constant. The equations (i)-(iii) with the Lagrangian L = LYM are called the Yang-Mills
equations, and a principal connection A solving the equations is called a Yang-Mills
connection. The Yang-Mills theory has become widespread since the foundational work
of Atiyah, Donaldson, Witten, and many others, cf. [AJ78, W94, T94, DK97, CVB03].

We note the following useful fact that arises in relation with the Yang-Mills La-
grangian (3.27). If one chooses an affine connection Γ : C → J1C on the bundle of
principal connections C → X, then the identity (2.18) shows that the Yang-Mills La-
grangian LYM factorizes through the covariant differential associated with the connection
S ◦ Γ on C → X, where S = pr1 : J

1C → C+.
On the kernel of the Euler–Lagrange operator EL (3.5), the identity (3.22) becomes

the weak conservation law

0 ≈ dλ
[
(uBp ξ

p + uBµ
p ∂µξ

p)πλ
B

]
(3.28)
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of the Noether current
Iλ = −(uBp ξ

p + uBµ
p ∂µξ

p)πλ
B. (3.29)

Accordingly, the equalities (i)–(iii) on the kernel (3.5) lead to the familiar Noether
identities for a gauge-invariant Lagrangian L:

(i) dµ(uBp π
µ
B) ≈ 0.

(ii) dλ(uBµ
p πλ

B) + uBp π
µ
B ≈ 0.

(iii) uBλ
p πµ

B + uBµ
p πλ

B = 0.

This system is equivalent to the weak equality (3.28) because the latter must hold for
arbitrary gauge parameters ξp(x). Expanding (3.28) in powers of ξ and its derivatives,
the coefficients of ξp, ∂µξp, and ∂µ∂λξp must each vanish separately, which yields precisely
the three identities (i)–(iii).

A glance at (3.28) and (3.29) shows that the Noether conservation law and current
are written explicitly in terms of gauge parameters. The weak identities (i)–(iii) ensure
that this dependence is compatible with gauge covariance. Concretely, they guarantee
that if the conservation law holds for a choice of ξ, then it also holds after an arbitrary
variation ξ 7→ ξ + δξ. In this sense the conservation law is gauge-covariant, it remains
consistent when the parameters are changed by the coadjoint representation (3.19).
Thus, the parameter dependence of the current is the mechanism that enforces gauge
invariance of the conservation law.

The equations (i)–(iii) are not mutually independent, in fact (i) follows from (ii)
and (iii). This redundancy reflects the fact that the current (3.29) can be rewritten in
superpotential form

Iλ = ξpuBλ
p δBL − dµ(ξ

puBµ
p πλ

B), (3.30)

where the antisymmetric superpotential is

Uµλ = − ξpuBµ
p πλ

B.

Since a matter field Lagrangian does not involve the second-order jet coordinates, the
expression of Uµλ simplifies and the Noether superpotential reduces to

Uµλ = ξpπµλ
p , (3.31)

so that it depends only on the gauge potentials and their first derivatives, and not on
matter fields.

The corresponding integral relation (3.13) reads∫
Nn−1

s∗Iλ ωλ =

∫
∂Nn−1

s∗
(
ξpπµλ

p

)
ωµλ, (3.32)

where Nn−1 is a compact oriented (n− 1)-dimensional submanifold of X with boundary
∂Nn−1. This expresses the current–field relation in integral form: the flux of the Noether
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current through Nn−1 is entirely determined by the superpotential flux across ∂Nn−1.
In physical terms, one can view (3.32) as relating a symmetry current to the gauge field
sourced by it. In the abelian case of electromagnetism, the analogous relation reduces
to the familiar balance between the electric current and the electromagnetic field it
generates. The key difference is that in the abelian case the gauge parameter dependence
drops out, while in the nonabelian case the current retains explicit ξ-dependence as a
manifestation of gauge covariance.

Example 3.3 (Abelian gauge model). As we saw above, in the nonabelian case the
Noether current and the conservation law generally depend on the gauge parameters
ξp(x), and we showed that this dependence is controlled by the Noether identities (i)–(iii),
which guarantee gauge covariance. By contrast, for an abelian symmetry group G the
situation simplifies, and one can take the Noether current and conservation law to be
independent of gauge parameters.

Let us consider the electromagnetic theory, where G = U(1) and the infinitesimal
action on the fiber is y 7→ iy. In this case, a gauge parameter ξ is not transformed
under the coadjoint action (3.19), so it may be chosen as a constant. Setting ξ = 1 for
convenience, the Noether current (3.29) becomes

Iλ = −uBπλ
B.

For U(1), this reduces further to

Iλ = −iyjπλ
j .

Thus in the abelian case the Noether current is independent of gauge potentials and
remains invariant under gauge transformations. Physically, this current is (up to sign)
the familiar electric current carried by matter fields.

In this case the weak conservation law for the Noether current (3.28) reduces to the
continuity equation

dλIλ ≈ 0,

and the integral relation (3.10) becomes∫
∂N

s∗(yjπλ
j )ωλ = 0,

for any compact n-dimensional submanifold N ⊂ X with boundary ∂N . This is precisely
the integral equation of continuity, expressing charge conservation: the total flux of the
electric current through ∂N vanishes.

When ξ = 1, the electromagnetic superpotential (3.31) takes the form

Uµλ = πµλ = − 1

4π
Fµλ,
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where F is the electromagnetic field strength. Substituting this into (3.12) yields

1

4π
dµFµλ = iyjπλ

j ,

which is exactly the system of inhomogeneous Maxwell equations: the divergence of
the electromagnetic field strength equals the electric current density. Accordingly, the
integral relation (3.32) is the integral form of Maxwell’s equations. In particular, one
recovers Gauss’s law: the flux of the electric field through a closed surface is equal to
the total electric charge contained inside the surface. ⋄

Let us now turn to energy-momentum conservation laws in gauge theory. For the sake
of simplicity, we will consider only gauge theory without matter fields. We work with
the Yang-Mills Lagrangian LYM on the jet manifold J1C. First recall the construction
from Example 2.4. Given a vector field τ on X, let A be a principal connection on the
principal bundle P → X, and let

τA = τλ(∂λ + Ap
λϵp)

denote the horizontal lift of τ onto P by means of the connection A. This vector field, in
turn, gives rise to the vector field τ̃A on the bundle of principal connections C, namely

τ̃A = τλ∂λ + [τλ(∂µA
r
λ + crpqa

p
µA

q
λ)− ∂µτ

β(arβ − Ar
β)]∂

µ
r . (3.33)

We will now derive the energy-momentum current along the vector field τ̃B.
Since the Yang-Mills Lagrangian LYM also depends on a background metric, we will

consider the total Lagrangian

LYM =
1

4ε2
aGpqσ

λµσβνFp
λβF

q
µν

√
| det(σµν)|ω, (3.34)

with respect to a metric σ, on the total configuration space J1(C ×X Sym2 TX), where
the tensor bundle Sym2 TX is provided with the holonomic coordinates (xλ, σµν). Given
a vector field τ on X, it has a canonical lift

τ̃ = τλ∂λ + (∂ντ
ασνβ + ∂ντ

βσνα)∂αβ

onto the tensor bundle Sym2 T ∗X, which is the generator of a local 1-parameter group
of general covariant transformations of Sym2 T ∗X. Thus, we have a lift

τ̃A = τλ∂λ +
[
τλ(∂µA

r
λ + crpqa

p
µA

q
λ)− ∂µτ

β(arβ − Ar
β)
]
∂µr

+ (∂ντ
ασνβ + ∂ντ

βσνα)∂αβ (3.35)

of a vector field τ on X onto the product C ×X Sym2 T ∗X. For the sake of simplicity,
we denote it by the same symbol τ̃A.

Our next task is to derive an explicit formula for the Noether current in the case of the
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Yang-Mills Lagrangian L = LYM and Yang-Mills connection A, i.e. the energy-moment
current IA along the vector field τ̃A. We start from the first variational formula. For a
projectable vector field v on the total configuration bundle, the first variational formula
(3.2) reads

LJ1v L = (δϕB) δBL + dλ
(
πλ
B δϕ

B − vλL
)
,

where ϕB denotes all fields, δBL are the Euler–Lagrange expressions, πλ
B = ∂L/∂(∂λϕB)

are the canonical momenta, and δϕB is the induced field variation.
Specializing to the symmetry generated by τ , we take v to be the lift τ̃A of the base

vector field τ defined in (3.35). Then LJ1τ̃AL = 0 because the Lagrangian is invariant
under the base diffeomorphism and gauge transformation generated by τ̃A. Thus

0 = (δϕB) δBL+ dλ
(
πλ
B δϕ

B − τλL
)
.

Now restrict to the Yang–Mills kernel. For pure Yang–Mills (no matter fields) the
only dynamical fields ϕB are the gauge potentials arν (and we treat the metric as a
fixed background for this step). Hence πλ

Bδϕ
B reduces to πλν

r δarν , with δarν = LτA
r
ν the

induced variation of the connection components. On the Yang-Mills kernel we have
δBL ≈ 0, so the bulk term vanishes and we are left with the weak conservation law

dλ
(
πλν
r δarν − τλL

)
≈ 0.

Recalling the definition (3.29), the Noether current associated to τ̃A is the horizontal
(n − 1)-form whose components are the quantity inside the divergence. Thus the
energy-momentum current is defined by

Iλ
A = πλν

r δarν − τλL. (3.36)

Going a step further, if one inserts the explicit expression for δarν given by the lifted
field variation (the bracketed expression in (3.35)), and expands πλν

r δarν , one obtains

Iλ
A = πλν

r

[
− τµ(∂νA

r
µ + crpqa

p
νA

q
µ − arµν) + ∂ντ

µ(arµ − Ar
µ)
]
− τλL. (3.37)

The total Lagrangian (3.34) is by construction invariant under gauge transformations
and general covariant transformations. Hence its Lie derivative along the vector field
τ̃A vanishes. Using the general formula (3.16) for weak identities in the presence of a
background field, one obtains, on the Yang-Mills kernel,

0 ≈ (∂ντ
αgνβ + ∂ντ

βgνα − ∂λg
αβτλ)∂αβL − dλIλ

A. (3.38)

The weak identity (3.38) can be rewritten as

0 ≈ ∂λτ
µtλµ

√
| det(g)| − τµCβ

µλt
λ
β

√
| det(g)| − dλIλ

A (3.39)

where Cβ
µλ are the Christoffel symbols of the Levi-Civita connection for g and tµβ are the
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components of the metric energy-momentum tensor of the gauge field, which is defined
by the formula

δgLYM =
1

2

√
|g| tµν δgµν . (3.40)

Remark 3.4 (Metric energy-momentum tensor). Regarding our definition of the metric
energy-momentum tensor via (3.40). Treating LYM locally as a function of the metric
components gαβ, we have

δgLYM =
∂LYM

∂gαβ
δgαβ.

Comparing with (3.40) and equating coefficients of the variations δgαβ gives

∂LYM

∂gαβ
=

1

2

√
|g| tαβ.

Multiplying both sides by gµα yields

gµα
∂LYM

∂gαβ
=

1

2

√
|g| gµαtαβ =

1

2

√
|g| tµβ,

and therefore
tµβ

√
| det(g)| = 2gµα∂αβLYM

which is another common definition of the metric energy-momentum tensor.

If instead one regards the independent metric variables to be the inverse metric gαβ

(i.e. choosing the coordinates gαβ on Sym2 TX), we may write the metric variation of
LYM as

δgLYM =
∂LYM

∂gαβ
δgαβ.

Then using the relation δgαβ = −gαµgβνδgµν and comparing with (3.40) gives

∂LYM

∂gαβ
(−gαµgβνδgµν) =

1

2

√
|g| tµνδgµν .

Equating coefficients of δgµν yields

− gαµgβν
∂LYM

∂gαβ
=

1

2

√
|g| tµν .

Multiplying bygνβ lowers an index so that

− ∂LYM

∂gαβ
gµα =

1

2

√
|g| tµβ.

Hence
tµβ

√
|g| = − 2 gµα

∂LYM

∂gαβ

so a minus sign appears if ∂/∂gαβ is used instead of ∂/∂gαβ. As always, one should be
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careful with conventions. ⋄

In the presence of a background field g we will use the notation√
|g| =

√
det |g|ω, ω = dx1 ∧ · · · ∧ dxn

to denote the Riemannian density.

Fact 3.5. For the Yang-Mills Lagrangian LYM = L
√

|g| with background field g, we
have the following identity for the momentum conjugate to ∂λAr

ν:

πλν
r =

∂L
∂(∂λAr

ν)
=

1

ε2
aGrq F q λν

√
|g| (3.41)

where F q λµ = gλαgµβF q
αβ.

Proof. For the Yang–Mills Lagrangian (3.34) we use the fact (3.26) that LYM factors
through F , together with the chain rule. Indeed, the Yang–Mills Lagrangian depends
on the connection arµ only through the field strength

F r
µν = ∂µa

r
ν − ∂νa

r
µ + crpqa

p
µa

q
ν .

By the chain rule, the momentum conjugate to arµ is

πλµ
r =

∂L
∂(∂λarµ)

=
∂L
∂F q

αβ

∂F q
αβ

∂(∂λarµ)
.

Next, using the linear dependence of F on the derivatives of a,

∂F q
αβ

∂(∂λarµ)
= δqr(δ

λ
αδ

µ
β − δλβδ

µ
α),

which reflects the antisymmetry F q
αβ = −F q

βα. Therefore,

πλµ
r =

∂L
∂F q

αβ

δqr(δ
λ
αδ

µ
β − δλβδ

µ
α) = 2

∂L
∂F r

λµ

,

where the factor of 2 arises from the antisymmetry of F r
αβ. Finally, inserting the explicit

form of the Lagrangian LYM (3.27) yields the formula (3.41).

Fact 3.6. For the metric energy-momentum tensor, the following identity holds:

tλµ
√

|g| = πλν
q F q

µν − δλµLYM . (3.42)

Proof. We use the density notation
√

|g| and set tµν = gµαtαν . The Yang–Mills La-
grangian density is

LYM = L
√

|g| L =
1

4ε2
aGpq F

p
αβF

q αβ.
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Varying LYM with respect to the metric gµν yields two contributions: the variation
of the volume factor

√
|g| and the variation of F q αβ through the metric used to raise

indices. Using δ
√
|g| = 1

2

√
|g|gµνδgµν , we obtain

δLYM =
1

4ε2
aGpq

[
(δ
√
|g|)Fp

αβF
q αβ +

√
|g| δ(F p

αβF
q αβ)

]
=

1

4ε2
aGpq

√
|g|

[
1
2
gµνFp

αβF
q αβ δgµν + δ(F p

αβF
q αβ)

]
.

Now vary the contraction Fp
αβF q αβ by varying one raised index,

δ(Fp
αβF

q αβ) = −2F q α
γFp βγ δgαβ.

and hence
δLYM =

1

4ε2
aGpq

√
|g|

[
1
2
gµνFp

αβF
q αβ − 2F q µ

ρFp νρ
]
δgµν .

Comparing with δLYM = 1
2
tµν

√
|g| δgµν from the definition (3.40) yields

tµν =
1

2ε2
aGpq

[
1
2
gµνFp

αβF
q αβ − 2F q µ

ρFp νρ
]
.

Lowering/raising indices and rearranging gives the equivalent form

tµ
λ
√

|g| = 1

ε2
aGpq Fp λνF q

µν

√
|g| − δλµLYM .

Finally, recall the identity (3.41) for the conjugate momenta πλν
r . Substituting (3.41)

into the previous expression yields

tλµ
√
|g| = πλν

q F q
µν − δλµLYM ,

which is the identity to be shown.

In particular, suppose A is a solution of the Yang-Mills equations. Taking the lift τ̃A
(3.35) with A = A, the energy-momentum current (3.37) reduces to

Iλ
A ◦ A = τµ(tλµ ◦ A)

√
| det(g)|.

Then the weak identity (3.39) on the Yang-Mills connection A becomes

0 ≈ −Cβ
µλ(t

λ
β ◦ A)

√
| det(g)| − dλ

(
(tλµ ◦ A)

√
| det(g)|

)
.

This is exactly the familiar covariant conservation law

∇∂λ

(
(tλµ ◦ A)

√
| det(g)|

)
= 0, (3.43)

where ∇∂λ is the Levi-Civita covariant derivative for the background metric g.
Note that, in the case of an arbitrary principal connection A, the corresponding
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weak identity (3.39) differs from (3.43) by the Noether conservation law

0 ≈ dλ(ξ
r
νπ

λν
r ), (3.44)

where
ξC = ξrν∂

ν
r = (∂νξ

r + crqpa
q
νξ

p)∂νr , ξr = τµ(Ar
µ − Ar

µ)

is the principal vector field (3.20) on C. This observation leads to the following key
idea: conservation laws for two different principal connections A and A differ only by a
Noether current, which reduces to a superpotential. Thus, while the explicit expression
for the current depends on the choice of connection, the covariant conservation law
(3.43) remains the physically relevant content.

3.5. Belinfante–Rosenfeld superpotential. It is instructive to compare the above
discussion with the familiar distinction between the canonical and the metric stress-
energy tensors in classical field theory. Given a Lagrangian L with background metric g,
Noether’s theorem applied to translations yields the stress-energy tensor

T λcan
µ =

∂L

∂(∂λϕa)
∂µϕ

a − δλµL,

where ϕa denotes generic field variables. This tensor is conserved in the weak sense, but
in general it is neither symmetric nor gauge-invariant. On the other hand, varying the
action with respect to the metric g produces the metric stress-energy tensor

T λmet
µ

√
| det g| = 2gλν ∂νµL,

which is symmetric by construction and covariantly conserved with respect to the
Levi-Civita connection:

∇∂λ

(
T λmet

µ

√
| det g|

)
= 0.

We recall the Belinfante–Rosenfeld procedure in classical field theory. In general,
the canonical tensor T can can be made symmetric and gauge-invariant by adding the
divergence of an antisymmetric tensor, the Belinfante–Rosenfeld superpotential :

T λBR
µ = T λcan

µ + ∂νU
νλ

µ, U νλ
µ = −Uλν

µ.

This improved tensor TBR is exactly the metric stress–energy tensor obtained by varying
the action with respect to g.

Fact 3.7. L = LYM be the Yang-Mills Lagrangian and let A be a Yang-Mills connection.
For the Noether current Iλ

A we have the on-shell decomposition

Iλ
A ≈ τµt λµ

√
|g| + dνU

νλ

in terms of the metric energy-momentum tensor tλµ and the Noether superpotential Uνλ.
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Proof. We work with the Lie-algebra-valued forms

A = Ar
µϵr dx

µ, F = 1
2
F r

µνϵr dx
µ ∧ dxν ,

and let D denote the covariant derivative D =d+ [A, ·]. Cartan’s formula for the Lie
derivative of the connection along the base vector field τ = τµ∂µ yields

LτA = ιτF + D(ιτA).

In components this reads

LτA
r
ν = τµF r

µν + Dν(τ
µAµ)

r, (3.45)

where
Dν(τ

µAµ)
r = ∂ν(τ

µAr
µ) + crpqa

p
ν(τ

µAq
µ).

Recall from (3.36) that the Noether current associated to the diffeomorphism generated
by τ is given by

Iλ
A = πλν

r δarν − τλL,

where πλν
r = ∂L/∂(∂λarν) and δarν = LτA

r
ν is the field variation induced by τ . Using

(3.45) and setting ζr := τµAr
µ, we obtain

Iλ
A = πλν

r

(
τµF r

µν +Dνζ
r
)
− τλL

= τµ πλν
r F r

µν + πλν
r Dνζ

r − τλL. (3.46)

Now rewrite the second term by the covariant product rule:

πλν
r Dνζ

r = Dν(π
λν
r ζr) − (Dνπ

λν
r ) ζr.

Hence (3.46) becomes

Iλ
A = τµ

(
πλν
r F r

µν − δλµL
)
+ Dν(π

λν
r ζr) − (Dνπ

λν
r ) ζr. (3.47)

Moreover, the weak vacuum form of the Yang-Mills Euler-Lagrange equations imply
that the covariant divergence of π vanishes on-shell, i.e.

Dνπ
νλ
r ≈ 0 or equivalently Dν(∂L/∂F r

νλ) ≈ 0.

Thus the last term in (3.47) vanishes on-shell, and we obtain the on-shell identity

Iλ
A ≈ τµ

(
πλν
r F r

µν − δλµL
)
+ Dν(π

λν
r ζr).

Finally note that Dν(π
λν
r ζr) equals the ordinary divergence dν(πλν

r ζr) up to connection
terms which are already accounted for by the on-shell vanishing of Dνπ

νλ
r . Setting

Uνλ = πνλ
r ζr = πνλ

r (τµAr
µ), and noting that πνλ

r is antisymmetric in ν, λ, we may rewrite
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Dν(π
λν
r ζr) = dνU

νλ. Moreover, using the identity (3.42) for the metric energy-momentum
tensor

t λµ
√

|g| = πλν
r F r

µν − δλµL.

we arrive at
Iλ
A ≈ τµt λµ

√
|g| + dνU

νλ,

which is the desired decomposition.

This equation exhibits that the energy-momentum current Iλ
A differs by a total diver-

gence from the metric energy-momentum τµtλµ
√

| det g|. Because Uνλ is a superpotential
(i.e. its divergence is a Noether current that itself reduces to a boundary term), the
difference carries no independent local dynamics and does not affect the covariantly
conserved quantity (3.43).

The passage from Iλ
A to tλµ is the gauge-theoretic counterpart of the Belinfante-

Rosenfeld construction in classical field theory, where one adds ∂νUνλ
µ (with Uνλ

µ

antisymmetric in ν, λ) to the canonical tensor to obtain the symmetric metric tensor.
The physically relevant energy-momentum tensor in gauge theory is tλµ, while the Noether
current Iλ

A can be viewed as its precursor, differing only by a total divergence.
In the Yang-Mills setting, the gauge-theoretic superpotential (3.31) plays the role

of that antisymmetric improvement term. It removes the connection-dependent part
of the current and yields the physically relevant, covariantly conserved metric energy-
momentum tensor. Similarly, the current Iλ

A in (3.37) is analogous to the canonical
stress-energy tensor (as it depends on the choice of a principal connection A used
to define the lift τ̃A) and the metric energy-momentum tensor tλµ in (3.39)–(3.43) is
analogous to the metric stress-energy tensor (being obtained from the metric variation
of the Yang–Mills Lagrangian). The weak identity (3.39) shows that the difference
between these two objects is exactly accounted for by a Noether current of the form
(3.44), which, as we have seen, reduces to a superpotential.
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