
Symmetries of Topological Graphs

Project Leader: Alex Taylor
IGL Scholars: Edie Hoganson, Shreyas Singh, Grace To

June 2022

Introduction
Graphs are commonly described as sets of points (vertices) coupled with a set of
connections between the vertices (edges). Graphs can also be described as a set of
vertices together with a disjoint union of open intervals embedded in R3, such that each
interval is bounded by two distinct vertices. In this context the aforementioned intervals
(edges) take on a physical meaning and can be studied as a topological space. These
topological graphs will be our main focus of study. Our goals for this project are as
follows:

• Learn about group theory and its common applications in topology and geometry.

• Characterize the homeomorphism group of a topological graph and describe its
properties.

• Produce results parallel to Theorem 6.8 (Farb, Margalit) in the context of homology
groups of topological graphs.

A topological graph is a pair consisting of a Hausdorff space X and a finite subspace
V ⊆ X (called vertices) such that the following two conditions hold:

(i) X − V is a finite disjoint union of open subsets e1, e2 . . . , en called edges, and each
edge is homeomorphic to an open interval of the real line.

(ii) The boundary ei − ei of the edge ei consists of two distinct vertices, and the pair
(ei, ei) is homeomorphic to the pair ([0, 1], (0, 1)).

In particular, our graphs are finite and regular (without any loops connecting vertices
to themselves). From now on we will use the notation ei to denote both the open edge
and the closed edge depending on the context – this should not cause any confusion
because continuous maps defined on an edge ei can be uniquely extended to a continuous
map on the closure ei. Henceforth let X denote a topological graph. We begin by stating
some relevant definitions:
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• The group of adjacency-preserving homeomorphisms of X is denoted Homeo(X),
and for the sake of brevity we will simply call these homeomorphisms. In other
words, this is really the group of cellular homeomorphisms of a one-dimensional
cell complex.

• The group of orientation-preserving homeomorphisms of X is denoted Homeo+(X).

• The group of graph automorphisms of X is denoted Aut(X).

• The group of edge automorphisms of X is denoted Aut∗(X).

• The boundary map ∂ : C1(X) → C0(X) from the group of 1-chains to the group of
0-chains (free abelian groups generated by the edges and vertices of X, respectively)
is defined by the formula ∂(edge) = final vertex − initial vertex.

• The first homology group of X is defined as the group H1(X) = ker ∂. Intuitively,
it measures the number of holes or cycles in X.

• Given a homeomorphism f : X → X, the induced map on homology f ∗ : H1(X) →
H1(X) is defined by the formula f ∗(cycle) = f(cycle) (note that f necessarily
maps cycles to cycles).

Results on the homeomorphism group
Since a topological graph X (with say, n edges) is basically a disjoint union of open
intervals joined by vertices, any homeomorphism of X can be thought of as a collection
of homeomorphisms of the unit interval I = [0, 1] glued together, and we envision the
homeomorphism as acting on X according to these homeomorphisms of intervals. How
can we make this idea precise?

We follow the procedure described by Hatcher [4]. Since there is only one way to
attach edges to each other via vertices once the adjacency relations of the graph are
specified, we can associate to each edge a canonical choice of (orientation-preserving)
homeomorphism φi : ei → I. The homeomorphisms φ1, φ2, . . . , φn are called charac-
teristic maps for X. Now, given any f ∈ Homeo(X), we can restrict to any edge ei to
obtain a homeomorphism fi = f |ei : ei → eσ(i) where σ ∈ Sn, and then factor through
the appropriate characteristic maps to express fi as a homeomorphism of intervals.

Thus we obtain a collection of homeomorphisms f̃ i = φσ(i) ◦ fi ◦ φ−1
i ∈ Homeo(I),

which we call interval representatives for f . Given two elements f, g ∈ Homeo(X)
which permute edges according to σ, τ ∈ Sn respectively, we define an operation

(f̃ 1, f̃ 2, . . . , f̃n) · (g̃1, g̃2, . . . , g̃n) = (f̃ τ(1) ◦ g̃1, f̃ τ(2) ◦ g̃2, . . . , f̃ τ(n) ◦ g̃n).

It follows from calculations made in the proof of Theorem 1 below that Homeo(I)n =
Homeo(I)×· · ·×Homeo(I) is a group with respect to this operation. We will summarize
the preceding remarks in the following lemma:
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Lemma 1. Label the edges of X by {e1, e2, . . . , en} and let f ∈ Homeo(X) permute
edges according to σ ∈ Sn. Suppose that for each 1 ≤ i ≤ n,

(i) φi : ei → I denotes the ith characteristic map.

(ii) fi = f |ei : ei → eσ(i) denotes the restriction of f to the ith edge.

(iii) f̃ i = φσ(i) ◦ fi ◦ φ−1
i denotes the ith interval representative for f .

Then we have a group homomorphism ψ : Homeo+(X) → (Homeo+(I))n given by

ψ(f) = (f̃ 1, f̃ 2, . . . f̃n)

Proof. We first check that ψ is a group homomorphism. Let f, g ∈ Homeo+(X) permute
edges according to some permutations σ, τ ∈ Sn respectively. Then f ◦ g permutes edges
according to σ ◦ τ , and the restriction of f ◦ g to edge ei is

(f ◦ g)|ei = f |eτ(i) ◦ g|ei
= (φ−1

σ(τ(i)) ◦ f̃ τ(i) ◦ φτ(i)) ◦ (φ−1
τ(i) ◦ g̃i ◦ φi)

= (φ−1
σ(τ(i)) ◦ f̃ τ(i) ◦ g̃i ◦ φi)

which means that the ith component of ψ(f ◦ g) is

φσ(τ(i)) ◦ (f ◦ g)|ei ◦ φ−1
i = f̃ τ(i) ◦ g̃i

which is exactly the ith component of ψ(f) · ψ(g) by definition of the group operation
in Homeo+(I)n. Hence ψ(f ◦ g) = ψ(f) · ψ(g).

Now we verify that ψ is surjective. This basically amounts to the statement that
any sequence of orientation-preserving homeomorphisms of I can be considered as the
interval representatives for some orientation-preserving homeomorphism of X. Let
(g1, g2, . . . , gn) ∈ Homeo+(I)n, and define let f ∈ Homeo+(X) by setting

fi = f |ei = φ−1
i ◦ gi ◦ φi

i.e. the map that sends each each edge ei to itself via the interval representative gi.
Each fi is an orientation-preserving homeomorphism as a composition of such maps, so
the resulting map f (obtained by applying the gluing lemma to the fi which agree on
their common domains, for example) is an orientation-preserving homeomorphism of X.
Evidently we have by definition,

ψ(f) = (φ1 ◦ f1 ◦ φ−1
1 , φ2 ◦ f2 ◦ φ−1

2 , . . . , φn ◦ fn ◦ φ−1
n )

= (g1, g2, . . . , gn)

so ψ is surjective.
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Notice that the map ψ in Lemma 1 is not injective because in the proof we chose to
send each ei to itself, and this choice was arbitrary. In general it seems as though we
can send each ei to eσ(i) for some σ ∈ Sn as long as σ defines a valid permutation of the
edges of X, so that any two elements in a fiber differ by an element of Aut∗(X). This
intuition will be confirmed by Theorem 1.

Furthermore, we note here that it was important to restrict our attention in Lemma
1 to orientation-preserving homeomorphisms, because the analogous map Homeo(X) →
Homeo(I)n without this restriction isn’t surjective. This can be seen by considering the
graph with just two edges joined by a vertex – in this situation there is no homeomorphism
of the graph whose interval representation is the pair (1− x, 1− x), because trying to
flip both edges would result in a map that fails to be continuous.

Lemma 2. There exists a surjective group homomorphism ϕ : Homeo+(X) → Aut∗(X)
with kerϕ ≃ Homeo+(I)n where n is the number of edges in X. In particular, there is
an isomorphism

Homeo+(X)/Homeo+(I)n ≃ Aut∗(X).

Proof. By our assumption that any (orientation-preserving) homeomorphism maps
edges homeomorphically onto edges, for each edge ei we have f(ei) = ej = α(ei) for
some edge automorphism α ∈ Aut∗(X). Thus we define the function ϕ by ϕ(f) = α.
This is clearly a group homomorphism because if g ∈ Homeo+(X) permutes edges
according to β ∈ Aut∗(X), and then f ∈ Homeo+(X) permutes edges according to
α ∈ Aut∗(X), then the resulting composition f ◦ g permutes edges according to α ◦ β;
i.e. ϕ(f ◦ g) = ϕ(f) ◦ ϕ(g).

Now we prove that ϕ is surjective. Fix an arbitrary α ∈ Aut∗(X) and write
α(ei) = eα(i) for brevity. For any edge ei let φi : ei → I denote the corresponding
characteristic map. It is easy to show that φi must map the endpoint vertices of ei to
the endpoints of I, i.e. 0 and 1, and these values are immediately determined by our
assumption that φi is orientation-preserving. We define a function f : X → X by setting
fi = f |ei = φ−1

α(i) ◦φi for each edge ei; that is, f permutes edges according to α and each
of its interval representatives is id. We will check that this defines a homeomorphism of
X such that φ(f) = α. The map f is an orientation-preserving homeomorphism because
it is the result of gluing together the orientation-preserving homeomorphisms fi along
their common domains (on which they all agree). Moreover, we have for each edge ei,

f(ei) = φ−1
α(i)(φi(ei)) = φ−1

α(i)(I) = α(ei)

so ϕ(f) = α by definition of ϕ.
Finally, we observe that kerϕ consists of all (orientation-preserving) homeomorphisms

which map edges of X to themselves. This subgroup can be identified with Homeo+(I)n

because any such homeomorphism is uniquely determined by n (orientation-preserving)
homeomorphisms of the interval, i.e. the interval representatives of each fi. The last
conclusion then follows from the first isomorphism theorem.
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Combining lemmas 1 and 2, we obtain a short exact sequence

1 −→ Homeo+(I)n
i−→ Homeo+(X)

ϕ−→ Aut∗(X) → 1

where i denotes the inclusion (identifying Homeo+(I)n with the kernel of ϕ). Moreover,
this sequence is left-split because ψ ◦ i yields the identity automorphism of Homeo+(I)n,
and we immediately obtain an isomorphism of Homeo+(X) with the direct product of
the outer groups,

Homeo+(X) ≃ Homeo+(I)n × Aut∗(X).

The only thing we need to prove is that Homeo+(I)n is a group with respect to the
operation we defined at the beginning of this section. We summarize this result in the
following theorem.

Theorem 1. Suppose X has n total edges, indexed from 1 to n. Then Homeo+(X) is
isomorphic to the group described as follows:

• The underlying set is the Cartesian product (Homeo+(I))n × Aut∗(X).

• Given two elements F = (f̃ 1, f̃ 2, . . . , f̃n, σ) and G = (g̃1, g̃2, . . . , g̃n, τ), the group
product is defined as F ·G = (f̃ τ(1) ◦ g̃1, f̃ τ(2) ◦ g̃2, . . . , f̃ τ(n) ◦ g̃n, σ ◦ τ).

The isomorphism in the statement of the theorem stems from the idea of creating
an element of Homeo+(X) by applying an automorphism σ to the graph’s edges and
each f̃ i to the edge indexed i.

Proof. The isomorphism follows immediately from the aforementioned left-split short
exact sequence, so we just need to check that Homeo+(I)n × Aut∗(X) is a group with
respect to the stated operation. It is clear that the element which is identity in each
component behaves as the identity element with respect to this operation, and that
inverses can be produced by replacing each component of an element by its respective
inverse. Thus it will suffice to show that the operation is associative. Take three arbitrary
elements

F = (f̃ 1, f̃ 2, . . . , f̃n, σ)

G = (g̃1, g̃2, . . . , g̃n, τ)

H = (h̃1, h̃2, . . . , h̃n, θ)

and notice that the product (F ·G) ·H certainly agrees with the product F · (G ·H) in
its last component, since this is just the product in Aut∗(X) which is associative. Thus
we will focus on the first n components. For 1 ≤ i ≤ n the ith component of F ·G is

(F ·G)i = f̃ τ(i) ◦ g̃i

and therefore the ith component of (F ·G) ·H is

((F ·G) ·H)i = (f̃ τ(θ(i)) ◦ gθ(i)) ◦ h̃i

5



Similarly, the ith component of G ·H is

(G ·H)i = g̃θ(i) ◦ h̃i

and therefore the ith component of F · (G ·H) is

(F · (G ·H))i = f̃ τ(θ(i)) ◦ (g̃θ(i) ◦ h̃i)

and since composition is associative in each Homeo(I) component, a direct comparison
shows that (F ·G) ·H = F · (G ·H) as desired.

Figure 1: An example of a homeomorphism from the cycle graph C4 to itself.

Example. The homeomorphism f in Figure 1 is a 90-degree counterclockwise rotation
mapping e4 and e2 according to the interval representative x2 and e1 and e3 according
to the identity. Hence we identify f with the tuple (x, x2, x, x2, σ) where σ = (1234).

A well-known fact about homeomorphisms I → I is that they are either monotonically
increasing (in which case they fix the endpoints) or decreasing (in which case they
swap the endpoints). From this it follows that there are no nontrivial finite-order
orientation-preserving homeomorphisms of I, and that any finite-order orientation-
reversing homeomorphism of I is conjugate to the linear involution x 7→ 1−x. Combining
this with the result of Theorem 1, we have the following classification of finite-order
elements of Homeo(X).

Corollary 1 (Classification of finite order elements). If f is a finite-order element of
Homeo(X), then the order of f equals the order of its corresponding automorphism.
Moreover, any finite-order element of Homeo(X) can be generated as follows:

1. Fix an automorphism σ of the vertices of X.

2. Use this to directly generate an edge automorphism, call it σ again.

3. Decompose σ into its permutation cycles, i.e. the cyclical sequence of edges obtained
by repeatedly applying σ to an edge (not to be confused with graph cycles).
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4. For each permutation cycle, pick arbitrary elements of Homeo+(I) for all but one
edge, the element for the final edge is determined as the inverse of the composition
of all previously chosen elements in that cycle.

5. Repeat the above step for all permutation cycles. The resulting list of elements of
Homeo+(I) together with the automorphism σ fully determine a finite order graph
homeomorphism by the previous theorem.

We previously remarked (in the paragraph following Lemma 1) that the homomor-
phism ψ cannot be extended to a homomorphism Homeo(X) → Homeo(I)n. Then
the question arises: what can we say about the larger group Homeo(X)? In fact, the
analogue of Lemma 2 still holds in this slightly more general situation.

Lemma 3. There exists a surjective group homomorphism ϕ : Homeo(X) → Aut(X)
with kerϕ ≃ Homeo+(I)n, where n is the number of edges in X. In particular, there is
an isomorphism

Homeo(X)/Homeo+(I)n ≃ Aut(X)

Proof. For any f ∈ Homeo(X), define ϕ(f) = f |V where V denotes the set of vertices
of X. Note that for any vertex v0 we must have ϕ(f(v0)) = f(v0), because v0 is in the
domain of both ϕ(f) and f . Therefore (ϕ(f) ◦ ϕ(g))(v0) = (ϕ(f))(g(v0)) = ϕ(f ◦ g)(v0).
Hence ϕ is a group homomorphism.

Now we will check that ϕ is surjective. We fix an ordering of the vertices of X, say
ei = (ai,0, ai,1) for each 1 ≤ i ≤ n. Let σ ∈ Aut(X) be any graph automorphism. The
automorphism σ determines a unique edge automorphism which we also label σ, so
that σ defines a permutation of the edges σ(ei) = eσ(i). We define a homeomorphism
f : X → X as follows:

1. If v is an isolated vertex (with degree 0) then set f(v) = σ(v).

2. If σ(ai,0) = aσ(i),0 then set f̃ i = id : I → I.

3. If σ(ai,0) = aσ(i),1 then set f̃ i = j : I → I.

4. Set f |ei = fi = φ−1
σ(i) ◦ f̃ i ◦ φi.

where j(x) = 1− x is the linear involution of I. We claim that the function f obtained
by gluing together the maps fi is a homeomorphism satisfying f |V = σ. It is clear that
any isolated vertices must map to other isolated vertices under both f and σ, and that
f and σ agree on these vertices by definition. Thus it will suffice to check that f and σ
agree at the endpoints of every edge.

We need to check four cases, according to whether the given vertex is the 0-vertex
or the 1-vertex of an edge, and whether σ follows the second or third condition for the
given vertex. Of course, these are all essentially the same quick calculation. In each case

7



we use the fact that φi(ai,0) = 0 and φi(ai,1) = 1 by our orientation-preserving convention.

Case (i). If σ(ai,0) = aσ(i),0 then

f(ai,0) = fi(ai,0) = φ−1
σ(i) ◦ φi(ai,0) = φ−1

σ(i)(0) = aσ(i),0 = σ(ai,0).

Case (ii). If σ(ai,1) = aσ(i),1 then σ(ai,0) = aσ(i),0 as well, so

f(ai,1) = fi(ai,1) = φ−1
σ(i) ◦ φi(ai,1) = φ−1

σ(i)(1) = aσ(i),1 = σ(ai,1).

Case (iii). If σ(ai,0) = aσ(i),1 then σ(ai,1) = aσ(i),0 as well, so

f(ai,0) = fi(ai,0) = φ−1
σ(i) ◦ j ◦ φi(ai,0) = φ−1

σ(i)(j(0)) = φ−1
σ(i)(1) = aσ(i),1 = σ(ai,0).

Case (iv). If σ(ai,1) = aσ(i),0 then

f(ai,1) = fi(ai,1) = φ−1
σ(i) ◦ j ◦ φi(ai,1) = φ−1

σ(i)(j(1)) = φ−1
σ(i)(0) = aσ(i),0 = σ(ai,1).

Finally, kerϕ is characterized in exactly the same way as in Lemma 2. It consists of
all homeomorphisms which fix the vertices of X, and since a homeomorphism which
fixes every vertex must also fix every edge, the subgroup kerϕ can be identified with
Homeo+(I)n in the same way as before.

As a result of Lemma 3 we have a short exact sequence

1 −→ Homeo+(I)n
i−→ Homeo(X)

ϕ−→ Aut(X) → 1

where i again denotes the inclusion after identifying Homeo+(I)n with the kernel of
ϕ. Due to the equivalence between short exact sequences and semidirect products, we
obtain the following characterization of the group Homeo(X).

Theorem 2. Suppose X has n total edges. Then Homeo(X) is a semidirect product

Homeo(X) ≃ Homeo+(I)n ⋊ξ Aut(X)

with respect to some homomorphism ξ : Aut(X) → Aut(Homeo(I)n).

The story is different from before, however, because this short exact sequence is
in general not left-split. We cannot use ψ to split the sequence this time because,
again, it does not map Homeo(X) onto Homeo+(I)n. Consider the most simple graph
X = I, and suppose that we have a group homomorphism p : Homeo(I) → Homeo+(I)
such that p ◦ i = id : Homeo+(I) → Homeo+(I). This latter condition means that
for any orientation-preserving homeomorphism f : I → I, we have p(f) = f . For
any orientation-reversing homeomorphism g : I → I, g ◦ j is orientation-preserving so
g ◦ j = p(g ◦ j) = p(g) ◦ p(j). Moreover, we have x = p(x) = p(j ◦ j) = p(j) ◦ p(j)
and since p(j) is orientation-preserving the only possibility is p(j) = x. Therefore p is
completely determined by the equation p(g) = g ◦ j.
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On the other hand, if g has finite order then there exists an orientation-preserving
homeomorphism f such that g = f−1 ◦ j ◦ f . Hence in this case

p(g) = p(f−1) ◦ p(j) ◦ p(f) = f−1 ◦ x ◦ f = x

The two equations p(g) = g ◦ j – which holds in general – and p(g) = x – which holds for
finite order homeomorphisms – cannot simultaneously be true. For example, if we take
f(x) = x2 and g(x) = f−1 ◦ j ◦ f(x) =

√
1− x2, then since g has finite order we have

p(g) = g ◦ j =
√
1− (1− x)2 ̸= x.

This contradiction implies that our supposition was erroneous, and there is no homo-
morphism p which splits the short exact sequence. Frankly speaking, the authors do
not think that Theorem 3 is very practically useful; however, we do find this to be an
interesting geometric example of a short exact sequence which is right-split but not
left-split. Even more interesting, we think, is that the difference between the group of
orientation-preserving homeomorphisms, and the group of homeomorphisms in general,
is encoded precisely by the splitting and respectively failed splitting of their short exact
sequences.

Homeomorphisms acting on the homology group
Our motivation is the following well-known result about mapping class groups of surfaces.

Theorem 3 (Farb, Margalit Theorem 6.8 [1]). For a surface S of genus g, let Mod(S) de-
note the mapping class group of S (consisting of isotopy classes of orientation-preserving
homeomorphisms of S). Suppose f ∈ Mod(S) has finite order and f ∗ ∈ Aut(H1(S)) is
induced from f . Then f ∗ = id implies that f = id.

Topological graph version of Theorem 3. Let X be a connected topological graph
with the property that any nontrivial finite homeomorphism f ∈ Homeo(X) induces
a nontrivial homomorphism f ∗ ∈ Aut(H1(X)). Then we will say that “the graph X
satisfies Theorem 3,” or “Theorem 3 holds for X”.

Notice that Theorem 3 does not hold universally if we simply replace the surface
S by a (connected) topological graph X. For example, a rotation of a cycle or a
map that permutes bridges and leaves the cycles unchanged would be a nontrivial
homeomorphism inducing the identity map on homology. We would like to provide a
partial characterization of topological graphs where the equivalent of Theorem 3 holds
true. The following key lemma simplifies this to a problem of graph theory, where some
results are already known (Sunada Theorem 4.5 [7], for example).

Lemma 4. F ∈ Homeo(X) is a counterexample to the topological graph version of
Theorem 3 if and only if F |V is a counterexample to the (non-topological) graph version
of Theorem 3.
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In other words: there is a nontrivial finite order homeomorphism F inducing F ∗ = id
if and only if the automorphism corresponding to F is also nontrivial and induces id.

In other words again: the problem of characterizing nontrivial induced automorphisms
on homology is the same for graphs and topological graphs.

Proof. Throughout this proof, to say that a function is a counterexample to the graph-
theoretic analogue of Theorem 3 (in either the topological or non-topological sense),
means that the function is nontrivial, it has finite order, and that it induces the identity
map on homology. We will also use the classification of finite order elements stated in
Corollary 1.

We start with the “if” direction. We claim that if f is a graph automorphism
that serves as a counterexample to Theorem 3 in the non-topological sense, then the
homeomorphism F = (id, id, . . . , id, f) is a counterexample in the topological sense.
Note that if edge ei maps to edge ej with some orientation under f , then it must do so
in the same way under F , so it is clear that F ∗ is the identity map whenever f ∗ is the
identity. The same logic shows that if f is not itself the identity map, then clearly F
is also not the identity map. Further, one can verify that F k = (id, id, . . . , id, fk), and
since f has finite order F is also of finite order. Therefore, if f is a counterexample,
then so is F .

For the “only if” direction, suppose that F is a finite-order homeomorphism serving
as a counterexample to Theorem 3 for topological graphs. We claim that f , the
automorphism corresponding to F , is a counterexample in the non-topological sense.
First note that f definitely has finite order since it’s an element of a finite group (of
automorphisms of a finite graph). By the same reasoning as before, if F ∗ is the identity,
then so is f ∗, because the only component of F determining which edges map to which
other edges is its corresponding automorphism, which is f by definition.

To prove that f is nontrivial whenever F is nontrivial, we take the contrapositive. If
f = id, then each edge maps to itself, so the homeomorphism F is uniquely determined by
its interval representatives f̃1, f̃2, . . . and moreover in this case we have F k = (f̃k

1, f̃
k
2, . . .).

Therefore, we see that if F has finite order, then each f̃ i must also be of finite order,
but the only orientation-preserving finite order homeomorphism of I is the identity map.
Hence f̃ i = id for each i, implying that F = id, and the contrapositive is proved.

We have shown that there is a counterexample to Theorem 3 in the topological case
if and only if there is a counterexample in the non-topological case, proving that the
two problems are equivalent.

We can combine the previous lemma with Sunada Theorem 4.5 [7], which states
that for a connected graph which is not a cycle and has no bridges, any nontrivial
automorphism induces a nontrivial map on homology. We immediately find that Theorem
3 holds for a connected topological graph which is not a cycle and has no bridges. The
following theorem also provides a significant expansion of the result proven by Sunada.

Theorem 4. If a connected topological graph is not a cycle and has no bridges, then
any nontrivial homeomorphism of the graph induces a nontrivial automorphism of its
homology group.
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Figure 2: Illustration of condition (iv) in Theorem 4. The vertices ai and bi must be
fixed when joined to M , which pins down the rest of Xi.

There are several other conditions ensuring that nontrivial homeomorphisms induce
nontrivial automorphisms:

(i) Suppose graph G satisfies Theorem 3 and consists of a disjoint union of connected
subgraphs {G1, G2 · · · }. Then each graph Gi satisfies Theorem 3.

(ii) Conversely, suppose H = {H1, H2 · · · } is a set of disjoint connected graphs with
each Hi satisfying Theorem 3, and no two trees in H are isomorphic. Then the
collective graph H satisfies Theorem 3. Note the additional clause in the converse
that was not present in condition (i).

(iii) Suppose a graph M is not a cycle and has no bridges, and suppose each Xi in
a set of graphs {X1, X2 · · · } contains a vertex ai with the property that the only
automorphism of Xi that fixes ai is id (henceforth, call a graph with this property
appendable). Then the graph produced by appending each Xi to a unique vertex
of M using ai satisfies Theorem 3.

(iv) Suppose a set of graphs M = {M1,M2 · · · } have no bridges (however, they could
be cycles). Further, let X = {X1, X2 · · · } be a set of multiple connected graphs
with the property that: Each Xi contains two vertices ai and bi such that the only
automorphism of Xi fixing both ai and bi and inducing the trivial map on homology
is id. Then any connected graph formed by connecting elements of M to each other
via elements of X using the endpoints a, b satisfies Theorem 3 (see Figure 2).

(v) Suppose C is a cycle and {X1, X2 · · · } is a set of appendable trees. Then appending
these trees to unique vertices on C results in a graph that satisfies Theorem 3
if and only if it does not have any nontrivial rotational symmetry about C (see
Figure 3).
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Figure 3: Illustration of condition (v) in Theorem 4. The cycle C on the left has trees
appended in a rotationally symmetric way, whereas the graph on the right does not.

In proving conditions (i)-(v), we will use the following lemma which is a direct
consequence of the first part of Theorem 4.

Lemma 5. If a subgraph Y of a topological graph X has no bridges and is not a cycle,
then for any f ∈ Homeo(X) we have f ∗ = id implies that f |Y = id.

Proof of Condition (i) in Theorem 4. We take the contrapositive. Suppose one
of the subgraphs Gi did not satisfy Theorem 3. Then there exists an automorphism
fi of Gi that is a counterexample to Theorem 3. Define an automorphism f of G by
f(x) = fi(x) if x is in Gi and f(x) = id otherwise. Then clearly f is a counterexample
on G.

Proof of Condition (ii) in Theorem 4. Note that each connected component Hi

must map completely onto another connected component Hj under any automorphism of
H, so the image of any subset of Hi fully determines the image of Hi. If an automorphism
f induces the identity map on the homology group of H, then clearly any Hi containing
some cycle Ci must map to itself because Ci must map to itself. Thus, f restricted to
Hi is an automorphism of Hi, meaning it must be the identity (because Hi satisfies
Theorem 3 by assumption). Further, because no trees in H are isomorphic, each tree
must map to itself, and further must do so by the identity automorphism (because each
tree in H also satisfies Theorem 3 by assumption). Because each element of H is either
a tree or has a cycle, we are done.

Proof of Condition (iii) in Theorem 4. The idea of this condition is that appending
some graph Xi to M forces the vertex ai to be fixed, which pins down the rest of Xi

by the appendability assumption. By Lemma 5, every vertex in M must map to itself.
Because each vertex ai coincides with a vertex of M by construction, each ai must be
fixed, and by the definition of appendability, each Xi must also be fixed.
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Proof of Condition (iv) in Theorem 4. The idea here is similar to that of condi-
tion (iii). Suppose Mc and Md have no bridges and they are joined together by some
connected graph X satisfying the condition stated in (iv). Let f be an automorphism
with f ∗ = id. If either Mc or Md is not a cycle then it must be fixed by f by Lemma 5.
Otherwise if either of Mc or Md is a cycle, say Mc, then the only nontrivial possibility
for f is that it rotates Mc since any reflection will transform its homology nontrivially.
But then the vertex ai which joins Mc to Xi would leave Xi, contradicting the fact
that f preserves adjacency. Therefore f must fix any cycles, and it must fix Xi by the
appendability assumption, so f = id and we are done.

Proof of Condition (v) in Theorem 4. The idea of this condition is that any
cycle with trees appended in a rotationally symmetric way will have nontrivial rotations
which induce the trivial map on homology, but this possibility is ruled out when we
introduce asymmetries.

If there is a rotational symmetry about C, then simply performing that rotation will
provide a counterexample to Theorem 3. Otherwise, every rotation of elements of C is
ruled out due to the lack of rotational symmetry, and thus the only transformation of C
is fixing each vertex. Then, by the definition of appendability, each Xi must also be
fixed.

Directions for future research
Here is a list of some of our unanswered questions that could inspire future research:

1. How can we use the cellular approximation theorem to transfer information about
the group of cellular homeomorphisms into information about the group of homeo-
morphisms of a topological graph? In other words, how does the algebraic structure
of the group of homeomorphisms interact with the topological approximation of a
homeomorphism by cellular homeomorphisms?

2. Can we provide a stronger classification of graphs that satisfy Theorem 3? If not,
can we prove that all such graphs fall into one of our given categories?

3. Grossman proved in 1975 that the group of homeomorphisms of a compact surface
is residually finite (Theorem 6.11 in Farb and Margalit). Thus we might ask: is
the group Homeo(X) of homeomorphisms of a topological graph residually finite?
An affirmative solution would lead to some nice results regarding the existence of
finite quotients of Homeo(X).

4. Usually for a topological graph, the higher homology groups H2(X), H3(X), . . .
are all zero; however, one can construct a complex where these groups are nonzero
(called the flag complex or clique complex) by thinking of higher-dimensional cells
as complete subgraphs. Then we might ask: how can we classify the finite-order
homeomorphisms of X which act nontrivially on Hk(X) for k > 1?
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