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Abstract
We explore the relationship between the existence of Dirac operators on a

vector bundle E and Clifford module structures on E. We define Dirac operators
on Euclidean space and then generalize this to Dirac-type operators acting on
sections of a vector bundle. We construct the Clifford algebra, prove the universal
property, and then generalize this to the Clifford bundle structure on a vector
bundle. Then we prove that there exists Dirac-type operators on a vector bundle
if and only if that vector bundle admits algebra-representations on each fiber, i.e.
a Clifford module structure.
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1 Introduction
In special relativity, the energy E of a free particle with rest massm and momentum
p satisfies the equation

E2 = (|p|c)2 + (mc2)2

which is the so-called energy-momentum relation. Writing p = (p1, p2, p3) for a
particle in R3 and solving for energy yields

E = c
√
m2c2 + p21 + p22 + p23

For simplicity we can rescale our coordinates so that c = ~ = 1, and in this case
the equation becomes

E =
√
m2 + p21 + p22 + p23
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When this equation is “quantized”, E and pj are replaced by their corresponding
quantum mechanical operators, i ∂∂t and −i ∂

∂xj
respectively. Hence we get

i
∂

∂t
=

√
m2 − ∂2

∂x21
− ∂2

∂x22
− ∂2

∂x23
=

√
m2 +∆

where ∆ = −
∑3

j=1
∂2

∂x2
j

is the Laplacian on R3. So given any state function ψ(x, t)
for the particle, the quantum mechanics are described by

i
∂ψ

∂t
=

(√
m2 +∆

)
ψ

and thus the question naturally arises: what is the square root of the Laplacian ∆?
In other words, we are searching for a constant coefficient first-order differential
operator D satisfying D2 = m2 +∆, so that

i
∂ψ

∂t
= Dψ(x, t)

To figure out what D should be, let’s write it in components

D = mγ0 +
3∑

j=1

γj
∂

∂xj

Then the relation D2 = m2 +∆ means that(
mγ0 + γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3

)2

= m2 − ∂2

∂x21
− ∂2

∂x22
− ∂2

∂x23

Now expanding the left-hand side of this equation and comparing coefficients yields
the system of equations:

γ20 = 1,

γ21 = γ22 = γ23 = −1,

γjγk + γkγj = 0 for 0 ≤ j 6= k ≤ 3

(1)

Obviously there are no complex numbers γ0, γ1, γ2, γ3 satisfying this system;
however, it is easy to find four 4× 4 complex matrices that do solve it. Namely,
the Dirac matrices:

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0
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In any case, the important thing about these matrices is not their entries themselves
but rather the algebraic relations (1) that they satisfy. Notice that we can write
the system (1) in the succinct form

γjγk + γkγj =


2I4 if j = k = 0

−2I4 if 1 ≤ j = k ≤ 3

0 if j 6= k

Or, what is the same,
γjγk + γkγj = (−2qjk)I4 (2)

where q is the bilinear form given by

q(u, v) = uT


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 v = uT ηv

Equation (2) is precisely the defining relation for the Clifford algebra structure
on the tensor algebra of a vector space equipped with a bilinear form q. In the
following section we will explain exactly what this means, and we will take this as
our motivation for studying the connection between Dirac operators, which satisfy
D2 = ∆, and the algebraic structure (2) on the tangent spaces of a Riemannian
manifold.

Remark. In equation (2) we are using the standard notation qjk = q(ej , ek) where
ej is a fixed basis for the vector space. In this case the bilinear form q is the usual
metric on Minkowski spacetime R× R3.

2 Clifford algebras
Let V be a vector space over C equipped with a bilinear form q : V ×V → C. The
tensor algebra generated by V is the vector space⊗

V = C⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

which is a unital associative algebra over C with respect to the tensor product
operation on vectors. Elements of the tensor algebra look like

a0 + a1v1 + a2(v2,1 ⊗ v2,2) + · · ·+ an(vn,1 ⊗ · · · ⊗ vn,n)

where aj ∈ C for each 1 ≤ j ≤ n and vj,k ∈ V for each 1 ≤ k ≤ j ≤ n. The
Clifford algebra associated with the pair (V, q) is obtained by demanding that
v ⊗ w + w ⊗ v = −2q(v, w) holds inside

⊗
V for each v, w ∈ V . Formally this is

achieved by taking the quotient of
⊗
V by the two-sided ideal generated by all

elements of the form v⊗+w⊗v+2q(v, w). More precisely, we define the two-sided
ideal

IC(V, q) = 〈v ⊗+w ⊗ v + 2q(v, w) : v, w ∈ V 〉

= span{α⊗ (v ⊗+w ⊗ v + 2q(v, w))⊗ β : v, w ∈ V, α, β ∈
⊗

V }
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and then define the Clifford algebra associated with (V, q) to be the quotient
space

Cl(V, q) =
⊗

V/IC(V, q)

which, of course, inherits an algebra structure from
⊗
V . Now by definition, inside

the Clifford algebra, we have
v ⊗ w + w ⊗ v = −2q(v, w), for every v, w ∈ V (3)

A priori we don’t know that the Clifford algebra is uniquely defined, but this will
follow immediately from the forthcoming universal property. First observe that V is
naturally isomorphic to a subspace of

⊗
V , via the embedding i : v 7→ 0⊕v⊕0 · · · .

Then composing with the canonical projection, this embedding descends to a linear
map i : V → Cl(V, q) satisfying

i(v)2 = i(v)⊗ i(v) = v ⊗ v = −q(v, v)
which shows in particular that i is injective if and only if q is nondegenerate.

Theorem 1 (Universal Property of Clifford Algebra). For any unital associative
algebra A over C and any linear map j : V → A satisfying j(v)2 = −q(v, v)1A for
every v ∈ V , there exists a unique algebra homomorphism f : Cl(V, q) → A such
that f ◦ i = j. In other words, j extends uniquely to an algebra homomorphism on
Cl(V, q).

In particular, the universal property immediately implies that Cl(V, q) is
uniquely defined up to isomorphism (of C-algebras), so it makes sense to talk
about the Clifford algebra associated with (V, q).

Now for any Riemannian manifold (M, g), at each p ∈M we obtain a bilinear
form on the tangent space at p, gp : TpM × TpM → R, and therefore we have at
each point a real Clifford algebra Cl(TpM, gp). However, we will be more interested
in the Clifford algebra associated with the cotangent spaces, Cl(T ∗

pM, gp). Then
we can consider the vector bundle of Clifford algebras on the cotangent bundle of
M ; i.e. the disjoint union

Cl(T ∗M, g) =
⊔
p∈M

Cl(T ∗
pM, gp)

which we might call the Clifford bundle associated with the pair (T ∗M, g), or
something like that, but I haven’t seen any standard terminology for this object.

More generally, given any vector bundle E →M equipped with a bundle metric
gE , there is a well-defined vector bundle Cl(E, gE) whose fiber over each p ∈M is
the Clifford algebra Cl(Ep, gEp). For our purposes in this note we will not need to
go beyond the case E = T ∗M .

Remark. We recall that, by definition, a Riemannian manifold is a pair (M, g),
where M is a smooth manifold, and g is a smooth map on M whose value gp at
any point p ∈ M is an inner product on TpM . In other words, g is a smooth,
symmetric, positive-definite, covariant 2-tensor field on M . Note that in this
context, since each tangent space is an inner product space, we have a canonical
isomorphism TpM ' T ∗

pM and thereby we also obtain inner products on each
cotangent space. In light of this identification, in the preceding paragraph we
denoted the inner product on both TpM and T ∗

pM by gp.
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3 Clifford modules
We are not just interested in Clifford algebras, but also in (C-algebra) representa-
tions of Clifford algebras; that is, understanding how the Clifford algebra acts on
another vector space. More generally, we are interested not only in the bundle of
Clifford algebras on a Riemannian manifold, but also in representing that bundle
as bundle endomorphisms acting on some other vector bundle. In fact, notice that
equation (2) is not exactly analogous to (3) despite the obvious similarity – the
former is a relation between linear maps on a vector space, whereas the latter is
a relation between vectors themselves. Passing from (2) to (3) is precisely the
work of a representation Cl(V, q) → End(W ) transforming tensor products into
compositions. These remarks lead us directly to the notion of a Clifford module.

Let A be a unital, associative C-algebra. A representation of A is a pair
(θ,W ) where W is a vector space over C and θ : A → End(W ) is an algebra
homomorphism, where we’re thinking of End(W ) as a C-algebra whose bilinear
product is composition of endomorphisms. More explicitly, we mean that θ : A →
End(W ) is a map satisfying:

(i) θ(au+ bv) = aθ(u) + bθ(v)

(ii) θ(u · v) = θ(u) ◦ θ(v)
(iii) θ(1A) = IdW

for every a, b ∈ C and u, v ∈ A. Thus, the representation allows us to think of
the algebra A as acting on the vector space W . Now the generalization to vector
bundles is just what you would expect: given a vector bundle E →M whose fiber
Ep at each point p ∈ M is a C-algebra, a representation for E is a pair (θ, F )
where F →M is another vector bundle over M and θ : E → End(F ) is a vector
bundle homomorphism which restricts to a representation of C-algebras on each
fiber. Explicitly, we mean that for every p ∈M , the restriction θ|p : Ep → End(Fp)
is a representation of C-algebras.

We are interested in the situation where (M, g) is a Riemannian manifold
and E = Cl(T ∗M, g) is the bundle of Clifford algebras. Suppose we have a
representation θ : Cl(T ∗M, g) → End(F ), then on each fiber θ must satisfy
(suppressing the pointwise notation)

θ(v)θ(w) + θ(w)θ(v) = θ(v ⊗ w + w ⊗ v)

= θ(−2g(v, w))

= −2g(v, w) Id

(4)

and such a representation for Cl(T ∗M, g) is called a Clifford map or Clifford
multiplication. The vector bundle F (on which Cl acts) is called a Clifford
module. Conversely, if θ : E → End(F ) is a representation such that, on each
fiber θ satisfies θ(v)θ(w)+ θ(w)θ(v) = −2g(v, w) Id, then by Theorem 1, θ extends
to a representation θ : Cl(T ∗M, g) → End(F ).

Notice that (4) is exactly the relation (2) we derived as a necessary condition
for the existence of a Dirac operator on Minkowski space M = R× R3 equipped
with the Riemannian metric g(u, v) = uT ηv. Thus, applying our new terminology
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to the old context, (2) says that a Dirac operator on Minkowski space exists if and
only if there is a Clifford multiplication which assigns the standard orthonormal
basis in R4 to the Dirac matrices, ej 7→ γj .

So, motivated by the connection of these two ideas, we might propose the
following more general hypothesis:

Hypothesis. Given a Riemannian manifold (M, g) and a vector
bundle E →M , we can find a Dirac operator if and only if E is a
Clifford module with respect to some Clifford multiplication map
θ : Cl(T ∗M, g) → End(E).

(5)

Of course, we need to make some of these details precise: what is a Dirac
operator in this more general setting? What is the operator supposed to be acting
on? In the next section we will clarify these details and then prove that our
hypothesis has an affirmative answer.

4 Dirac operators
A differential operator on Rn is just a C∞(Rn)-combination of partial derivative
operators that acts linearly on smooth functions by differentiation; in other words,
it’s a linear map D : C∞(Rn) → C∞(Rn) that looks like

D =
∑

|α|≤m

aα(x)∂
α
x

where each α = (j1, . . . , jn) is a multi-index with |α| = j1 + · · ·+ jn, each aα is a
smooth function of x ∈ Rn and ∂αx = ∂j1x1 · · · ∂

jn
xn . In this case the positive integer

m is called the order of D. An example of a second-order constant coefficient
differential operator on Rn is the Laplacian,

∆ = −
n∑

j=1

∂2

∂x2j

and a first-order differential operator satisfying D2 = D ◦D = ∆ is called a Dirac
operator on Rn. Here’s a rough outline of how we will proceed to generalize these
concepts to the setting of a vector bundle E →M over a Riemannian manifold:

1. A differential operator acts on sections of a vector bundle E →M , and just
looks like a Euclidean differential operator after local trivialization.

2. The principal symbol of a differential operator isolates the highest order
terms and replaces partial derivatives with cotangent variables.

3. A differential operator is Laplace-type if its principal symbol at each point is
multiplication by a scalar.

4. A differential operator D is Dirac-type if it’s symmetric and D2 is Laplace-
type.
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Let (M, g) be a Riemannian manifold and let π : E →M be a vector bundle. Let
Γ(E) denote the sections of E, endowed with a vector space structure via fiber-wise
operations. Let D : Γ(E) → Γ(E) be a linear map, and suppose that for every
p ∈ M we can find local coordinates ϕ : U ⊆ M → Rn and a local trivialization
φ : π−1(U) → U × Rk at p, such that for any local section µ : U ⊆M → π−1(U)
we have

Dµ =
∑

|α|≤m

aα(p)∂
α
x (πRk ◦ φ ◦ µ)

=
∑

|α|≤m

aα(p)∂
α
x (µ̂)

then D is called a (order m) differential operator on sections of E, or just a
differential operator on E. The main idea here is that, after choosing local
coordinates and local trivializations, sections of E just look like smooth maps
Rn → Rk, and D just acts like a Euclidean differential operator. Following this
notation, the principal symbol of D is the map σm(D) : T ∗M → End(E) given
by

σm(D)(p, ωp) = im
∑

|α|=m

aα(p)ω
α

where ω = ω1dx
1+ · · ·ωndx

n in local coordinates and ωα = wα1
1 · · ·ωαn

n ∈ C∞(M).
The main idea here is that we’re just taking just top-order term of D and replacing
the partial derivatives with cotangent variables. (The factor of im is a normalization
factor that simplifies calculations.)

Now we have all of the groundwork set to generalize the concepts of Laplace
and Dirac operators. A second-order differential operator L on E is Laplace-type
if, at each p ∈M , its principal symbol is given by

σ2(L)(p, ωp) = gp(ωp, ωp) IdEp = |ωp|2 IdEp

that is, at each p ∈M the principal symbol acts on Ep by scalar multiplication by
|ωp|2. A first-order differential operator D on E is Dirac-type if D2 = D ◦D is
Laplace-type. It is now straightforward to verify in the affirmative one direction
of our hypothesis (5):

Fact 1. A Dirac-type operator on E induces a Clifford module structure on E.

Proof. Write θ = σ1(D). Since D is symmetric and D2 = L is Laplace-type, we
have for any (p, ωp) ∈ T ∗M ,

θ(p, ωp)
2 = σ2(D ◦D)(p, ωp)

= σ2(L)(p, ωp)

= gp(ωp, ωp) IdEp
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Now applying this formula to ν + ω ∈ T ∗M we have

[g(ν, ν) + g(ω, ω) + 2g(ν, ω)] Id = g(ν + ω, ν + ω) Id

= θ(ν + ω)2

= (θ(ν) + θ(ω))(θ(ν) + θ(ω))

= θ(ν)2 + θ(ν)θ(ω) + θ(ω)θ(ν) + θ(ω)2

= g(ν, ν) Id+g(ω, ω) Id+θ(ν)θ(ω) + θ(ω)θ(ν)

And consequently
θ(ν)θ(ω) + θ(ω)θ(ν) = 2g(ν, ω) Id

So by our previous remark, θ : T ∗M → End(E) extends to a representation
θ : Cl(T ∗M, g) → End(E). Hence E is a Clifford module and the Clifford multipli-
cation is given by the principal symbol of D, θ = σ1(D).

Now we will prove the converse of Fact 1.

Fact 2. A Clifford module admits Dirac-type operators.

Proof. Conversely, let π : E → M be a Clifford module over M with Clifford
multiplication θ : Cl(T ∗M, g) → E. We will construct a Dirac-type operator D on
E by first defining an operator locally on an open neighborhood of any point, and
then use a partition of unity to piece together the local operators. For any p ∈M ,
choose local coordinates (x1, . . . , xn) in a locally trivial open neighborhood Uα

containing p, and let φ : π−1(Uα) → Uα × Rk denote the local trivialization for
both T ∗M |Uα and E|Uα . Define a differential operator Dα : Γ(E|Uα) → Γ(E|Uα)
by

Dα(µ) =

m∑
j=1

θ(dxj)(µ̂)

for any local section µ ∈ Γ(E|Uα), expressed in local coordinates as µ̂ = πRk ◦φ ◦µ.
Then, choosing a partitution of unity ψα : Uα → R subordinate to the open cover
(Uα) for M , we define a Dirac-operator on E by D =

∑
α ψαDα.

In light of these two facts we can promote hypothesis (5) to the status of a
theorem:

Theorem. Given a Riemannian manifold (M, g) and a vector bundle
E → M , we can find a Dirac operator on E if and only if E is a Clifford
module.

5 Open questions
Not “open” questions per se, but just some ideas/questions that occurred to me
while writing this note, and which I don’t have satisfactory answers to.
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1. Does every vector bundle admit a Clifford module structure / Dirac operators?
Is there a manifold where there is no Clifford module / Dirac operators?

2. How can we classify all Dirac operators on a vector bundle? Can we con-
struct a one-to-one correspondence between Dirac operators and some other
collection of objects?

3. There may be a lot of necessary and sufficient relations or conditions that
characterize Dirac operators – what makes the Clifford algebra structure an
important or useful one?
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