Topological and operator K-theory

Alex Taylor The University of Illinois at Urbana-Champaign

Abstract

Using the K_0 group of a compact Hausdorff space to motivate the definition of the K^0 group of a C^* -algebra, we introduce operator K-theory as a noncommutative analogue of topological K-theory.

Contents

|--|

1

 $\mathbf{4}$

2 Operator K-theory

1 Topological K-theory

Given a locally compact Hausdorff space X, what are all of the possible vector bundles over X? A reasonable approach to this question is to construct a group $K^0(X)$ consisting of isomorphism classes of vector bundles over X, which might encode some information about which vector bundles X admits.

First of all, suppose that X is compact. Let $E \to X$ be a vector bundle over X. We let [E] denote the equivalence class of vector bundles isomorphic to E, and consider the set of isomorphism classes:

 $V(X) = \{ [E] : E = \text{vector bundle over } X \}$

Note that V(X) is a commutative monoid with respect the operation of direct sum of vector bundles over X. Namely, given two vector bundles $p: E \to X$ and $q: F \to X$ we define their direct sum by

$$E \oplus F = \bigsqcup_{x \in X} E_x \oplus F_x$$

and

$$p \oplus q : E \oplus F \to X$$
$$(e, f) \mapsto p(e) = q(f)$$

so that $E \oplus F \to X$ is another vector bundle over X. The identity element of this monoid is the rank-0 trivial bundle

$$[0] = [X \times \{x\}]$$

for any $x \in X$. Unfortunately, V(X) is not a group as it lacks inverses.

Example 1.

- (a) When $X = \{x\}$ is a single point, we have $V(X) \simeq \mathbb{N} \cup \{0\}$.
- (b) Letting $V_{\mathbb{R}}$ and $V_{\mathbb{C}}$ refer to real and complex vector bundles respectively, we have $V_{\mathbb{C}}(S^1) \simeq \mathbb{N} \cup \{0\}$ and $V_{\mathbb{R}}(S^1) \simeq (\mathbb{N} \cup \{0\}) \times \mathbb{Z}_2$.

In order to turn V(X) into a group we will use the Grothendieck group construction. The general idea is to turn a commutative semigroup into a group in a "minimal" way. Given a commutative semigroup H and a subsemigroup $K \subseteq H$, define an equivalence relation on the product $H \times K$ by

$$(h_1, k_1) \sim (h_2, k_2) \iff (h_1 k_2) x = (h_2 k_1) x$$
 for some $x \in K$

Here we are thinking of the pair $(h,k) \in H \times K$ as a fraction h/k, so that, heuristically speaking, $(h_1,k_1) \sim (h_2,k_2)$ holds if and only if $h_1/k_1 = h_2/k_2$. Then we consider the set of equivalence classes

$$[H][K]^{-1} = (H \times K) / \sim = \{ [(h,k)] \}$$

and note that this is a commutative monoid with respect to the multiplication inherited from H:

$$[(h_1, k_1)] \cdot [(h_2, k_2)] = [(h_1h_2, k_1k_2)]$$

where the identity element is

$$1 = \left[(x, x) \right]$$

for any $x \in K$. The point of this construction is that, in this quotient space, the ordered pairs of elements of K are invertible: for any $k_1, k_2 \in K$ we have

$$[(k_1, k_2)][(k_2, k_1)] = [(k_1k_2, k_2k_1)] = 1$$

which is to say that $[(k_1, k_2)]^{-1} = [(k_2, k_1)]$. In essence, the commutative monoid $[H][K]^{-1}$ is obtained from H by inverting the elements of K; therefore, in the special case that H = K, we obtain an abelian group

$$G(H) = [H][H]^{-1}$$

called the **Grothendieck group** of H. We note that G(H) is the "minimal" group extending the semigroup H in the sense that any homomorphism $\phi : H \to S$ of semigroups (which sends H to invertible elements of S) extends uniquely to a homomorphism $\psi : G(H) \to S$. An immediate consequence is that G is a covariant functor from the category of commutative semigroups to the category of abelian groups:

{commutative semigroups} \xrightarrow{G} {abelian groups} $\phi: H_1 \to H_2 \mapsto G(\phi): G(H_1) \to G(H_2)$

Example 2.

- (a) $G(\mathbb{N},+) = (\mathbb{Z},+)$
- (b) $G(\mathbb{N}, \cdot) = (\mathbb{Q}_{\geq 0}, \cdot)$

Now we return to the situation where X is a compact Hausdorff space and V(X) is the commutative monoid of isomorphism classes of vector bundles over X. In this case we use the Grothendieck group construction to define the group

$$K^{0}(X) = G(V(X)) = \{ [E] - [F] : E, F = \text{vector bundles over } X \}$$

which consists of all formal differences of isomorphism classes of vector bundles over X. Notice first of all that K^0 is a *contravariant* functor from the category of compact spaces to the category of abelian groups because V is contravariant and G is covariant. First, V takes any continuous map $\phi : X \to Y$ between compact spaces and sends it to the map $\phi^* : V(Y) \to V(X)$ given by

$$\phi^* : [E \to Y] \mapsto [\phi^* E \to X]$$

where $\phi^* E \to X$ denotes the pull-back bundle induced by ϕ . Then, as ϕ^* is a morphism in the category of commutative monoids, the G functor turns it a morphism

$$G(\phi^*): G(V(Y)) \to G(V(X))$$

in the category of abelian groups. In other words this is the morphism $K^0(\phi)$: $K^0(X) \to K^0(Y)$, which we shall henceforth denote by ϕ^* .

Fact 1 (Homotopy invariance). Let X, Y be compact spaces and $f, g : X \to Y$ continuous maps. If f and g are homotopic then $f^* = g^* : K^0(X) \to K^0(Y)$.

Example 3. For any contractible space X we have $K^0(X) \simeq K^0(\{x_0\})$ by homotopy invariance, and therefore

$$K^{0}(X) \simeq K^{0}(\{x_{0}\}) = G(V(\{x_{0}\})) = G(\mathbb{N} \cup \{0\}) = \mathbb{Z}$$

In particular, for any nonempty compact space X, the function $p: X \to \{x_0\}$ induces an injective morphism $p^*: K^0(\{x_0\}) \to K^0(X)$, and therefore $K^0(X)$ always contains a copy of \mathbb{Z} . We define the reduced K^0 -group of X by modding out by any one of these copies of \mathbb{Z} :

$$\widetilde{K}^0(X) = K^0(X)/\mathbb{Z}.$$

In order to get a working theory out of this K-group it's necessary to define K^0 for non-compact spaces too. For any locally compact Hausdorff space X we let X^+ denote the one-point compactification of X and then define

$$K^0(X) = \widetilde{K}^0(X^+)$$

i.e. the reduced K^0 -group of the one-point compactification of X. For the remainder of this section we will assume X is a locally compact Hausdorff space. Given any closed subspace $Y \subseteq X$, the sequence

$$Y \stackrel{i}{\hookrightarrow} X \stackrel{q}{\to} X/Y$$

induces a short exact sequence of K^0 -groups,

$$K^0(X/Y) \xrightarrow{q^*} K^0(X) \xrightarrow{i^*} K^0(Y)$$

given by the composition $[E] \mapsto [q^*E] \mapsto [i^*q^*E]$. Moreover, for each $n \ge 1$ we define the *n*th K-group as

$$K^n(X) = K^0(X \times \mathbb{R}^n)$$

and so the same argument gives another short exact sequence

$$K^n(X/Y) \xrightarrow{q^*} K^n(X) \xrightarrow{i^*} K^n(Y)$$

for every $n \geq 1$. For each *n* one can construct a connecting homomorphism $\delta : K^n(X) \to K^{n-1}(Y)$ and thereby get an infinite long exact sequence of *K*-groups which terminates in $K^0(Y)$. In fact, the sequence is actually cyclical:

Fact 2 (Bott periodicity). For any locally compact Hausdorff space Z we have

$$K^{n+2}(Z) \simeq K^n(Z)$$
 for every $n \ge 0$

when complex vector bundles are considered. Furthermore, we have

 $K^{n+8}(Z) \simeq K^n(Z)$ for every $n \ge 0$

when real vector bundles are considered.

This beautiful fact reduces the study of K-groups to the study of the two groups $K^0(X)$ and $K^1(X) = K^0(X \times \mathbb{R})$ (when considering complex vector bundles over X).

2 Operator K-theory

In this section we want to explain the following common description of operator K-theory:

Operator K-theory is a non-commutative analogue of topological K-theory for C^* -algebras. (Wikipedia)

We will conclude by explaining the connection between several equivalent definitions of the K^0 -group of a C^* -algebra.

Suppose we have a compact Hausdorff space X. There is a one-to-one correspondence between vector bundles over X and finitely- generated projective modules over C(X) given by the functor Γ sending any vector bundle E to the C(X)-module $\Gamma(E)$ of sections of E. Indeed, given any vector bundle $E \to X$, by Swan's theorem we can find a vector bundle $F \to X$ such that $E \oplus F \simeq X \times \mathbb{R}^n$ is a trivial bundle. Therefore

$$\Gamma(E) \oplus \Gamma(F) \simeq \Gamma(E \oplus F)$$
$$\simeq \Gamma(X \times \mathbb{R}^n)$$
$$\simeq C(X)^n$$

where the latter is a finitely-generated free module over C(X). Thus, we have shown that $\Gamma(E)$ is a finitely-generated projective module over C(X). It's not difficult to show that Γ gives a one-to-one correspondence by constructing an explicit "inverse" which associates to any such module M a vector bundle $\Psi(M) \to X$ such that $\Gamma(\Psi(M)) = M$. This observation gives us the following interpretation of the group $K^0(X)$: **Fact 3.** Let X be a compact Hausdorff space. Then $K^0(X)$ can be identified with the group of formal differences [M]-[N] of isomorphism classes of finitely-generated projective modules over C(X).

Now for any commutative unital C^* -algebra A, the Gelfand-Naimark theorem gives us an isometric *-isomorphism $A \simeq C(X)$ for some compact space X (recall that X consists of characters on A, and the *-isomorphism is given by $A \to C(X)$, $a \mapsto \hat{a}$ where $\hat{a}(\phi) = \phi(a)$ for every character ϕ). Therefore, it makes sense to define the K_0 group of the C^* -algebra A by the prescription

$$K_0(A) = K^0(X).$$

Thus by Fact 3, we have a natural generalization to the non-commutative case: for any unital C^* -algebra A, let $K_0(A)$ be the group of formal differences of isomorphism classes [M] - [N] of finitely-generated projective modules over A. In other words, if M(A) denotes the monoid of isomorphism classes of finitelygenerated projective A-modules, then the K_0 -group of A is the Grothendieck group

$$K_0(A) = G(M(A)).$$

This is why the operator K-theory is often described as a non-commutative version of topological K-theory.

The definition of $K_0(A)$ we've taken here arises naturally from the topological *K*-theory group $K^0(X)$, but it's not always the most useful definition in practice. The group $K_0(A)$ can be realized in several other equivalent ways, which are often more concrete.

1. Let A be a unital C^* -algebra and define the matrix algebra of A as

$$M_{\infty}(A) = \bigcup_{n \ge 1} M_n(A)$$

and recall that two idempontents $p, q \in M_{\infty}(A)$ are orthogonal if pq = qp = 0. In this case it makes sense to define their orthogonal sum $p \oplus q \in M_{\infty}(A)$. We say that two idempotents p and q are equivalent if they are similar in the matrix algebra, i.e. $apa^{-1} = q$ for some invertible $a \in A$. In this case we write $p \sim q$.

Consider the set of equivalence classes of projections in the matrix algebra:

$$V_1 = \{ [p] : p \in M_{\infty}(A) \text{ idempotent} \}$$

This set is a commutative semigroup with respect to the operation

$$[p] + [q] = [p' \oplus q']$$

where $p' \perp q'$, $p' \sim p$ and $q' \sim q$.

2. By the Gelfand-Naimark-Segal construction we can find a faithful represention $A \to \mathbb{B}(H_A)$ of A as bounded operators on some Hilbert space H_A (this is the GNS representation). Let $\mathbb{K}(H_A)$ denote the set of compact operators on H_A , and consider the set of equivalence classes of projections

$$V_2 = \{ [P] : P \in \mathbb{K}(H_A) \text{ projection} \}$$

Once again, this is a commutative semigroup with respect to the same operation of orthogonal sum as above. Just like we did in section 1, we can consider the Grothendieck groups $G(V_1)$ and $G(V_2)$, which consist of formal differences of equivalence classes of idempotents and compact projections, respectively. Then

$$K_0(A) \simeq G(V_1) \simeq G(V_2)$$

so we have three equivalent realizations of the K_0 -group of A. To see why these are isomorphic, let's write

$$V = \{[M] : M = \text{fgp } A\text{-module}\}$$

so that $K_0(A) = G(V)$ by definition. We have isomorphisms

$$\phi: V_1 \to V, \ [p] \mapsto [p(A^n)]$$

and

$$\varphi: V_2 \to V, \ [P] \mapsto [P(H_A)]$$

which therefore induce isomorphisms on the respective Grothendieck groups.

References

[1] N.E. Wegge-Olsen, *K*-Theory and C^{*}-Algebras: A Friendly Approach, Oxford University Press, 1993

- [2] William Arveson, An Invitation to C^{*}-Algebras, Springer, 1976
- [3] Florin Boca's lecture notes