Topological and operator K-theory

Alex Taylor
The University of Illinois at Urbana-Champaign

Abstract

Using the K_{0} group of a compact Hausdorff space to motivate the definition of the K^{0} group of a C^{*}-algebra, we introduce operator K-theory as a noncommutative analogue of topological K-theory.

Contents

1 Topological K-theory 1
2 Operator K-theory 4

1 Topological K-theory

Given a locally compact Hausdorff space X, what are all of the possible vector bundles over X ? A reasonable approach to this question is to construct a group $K^{0}(X)$ consisting of isomorphism classes of vector bundles over X, which might encode some information about which vector bundles X admits.

First of all, suppose that X is compact. Let $E \rightarrow X$ be a vector bundle over X. We let $[E]$ denote the equivalence class of vector bundles isomorphic to E, and consider the set of isomorphism classes:

$$
V(X)=\{[E]: E=\text { vector bundle over } X\}
$$

Note that $V(X)$ is a commutative monoid with respect the operation of direct sum of vector bundles over X. Namely, given two vector bundles $p: E \rightarrow X$ and $q: F \rightarrow X$ we define their direct sum by

$$
E \oplus F=\bigsqcup_{x \in X} E_{x} \oplus F_{x}
$$

and

$$
\begin{aligned}
& p \oplus q: E \oplus F \rightarrow X \\
& (e, f) \mapsto p(e)=q(f)
\end{aligned}
$$

so that $E \oplus F \rightarrow X$ is another vector bundle over X. The identity element of this monoid is the rank-0 trivial bundle

$$
[0]=[X \times\{x\}]
$$

for any $x \in X$. Unfortunately, $V(X)$ is not a group as it lacks inverses.

Example 1.

(a) When $X=\{x\}$ is a single point, we have $V(X) \simeq \mathbb{N} \cup\{0\}$.
(b) Letting $V_{\mathbb{R}}$ and $V_{\mathbb{C}}$ refer to real and complex vector bundles respectively, we have $V_{\mathbb{C}}\left(S^{1}\right) \simeq \mathbb{N} \cup\{0\}$ and $V_{\mathbb{R}}\left(S^{1}\right) \simeq(\mathbb{N} \cup\{0\}) \times \mathbb{Z}_{2}$.

In order to turn $V(X)$ into a group we will use the Grothendieck group construction. The general idea is to turn a commutative semigroup into a group in a "minimal" way. Given a commutative semigroup H and a subsemigroup $K \subseteq H$, define an equivalence relation on the product $H \times K$ by

$$
\left(h_{1}, k_{1}\right) \sim\left(h_{2}, k_{2}\right) \Longleftrightarrow\left(h_{1} k_{2}\right) x=\left(h_{2} k_{1}\right) x \text { for some } x \in K
$$

Here we are thinking of the pair $(h, k) \in H \times K$ as a fraction h / k, so that, heuristically speaking, $\left(h_{1}, k_{1}\right) \sim\left(h_{2}, k_{2}\right)$ holds if and only if $h_{1} / k_{1}=h_{2} / k_{2}$. Then we consider the set of equivalence classes

$$
[H][K]^{-1}=(H \times K) / \sim=\{[(h, k)]\}
$$

and note that this is a commutative monoid with respect to the multiplication inherited from H :

$$
\left[\left(h_{1}, k_{1}\right)\right] \cdot\left[\left(h_{2}, k_{2}\right)\right]=\left[\left(h_{1} h_{2}, k_{1} k_{2}\right)\right]
$$

where the identity element is

$$
1=[(x, x)]
$$

for any $x \in K$. The point of this construction is that, in this quotient space, the ordered pairs of elements of K are invertible: for any $k_{1}, k_{2} \in K$ we have

$$
\left[\left(k_{1}, k_{2}\right)\right]\left[\left(k_{2}, k_{1}\right)\right]=\left[\left(k_{1} k_{2}, k_{2} k_{1}\right)\right]=1
$$

which is to say that $\left[\left(k_{1}, k_{2}\right)\right]^{-1}=\left[\left(k_{2}, k_{1}\right)\right]$. In essence, the commutative monoid $[H][K]^{-1}$ is obtained from H by inverting the elements of K; therefore, in the special case that $H=K$, we obtain an abelian group

$$
G(H)=[H][H]^{-1}
$$

called the Grothendieck group of H. We note that $G(H)$ is the "minimal" group extending the semigroup H in the sense that any homomorphism $\phi: H \rightarrow S$ of semigroups (which sends H to invertible elements of S) extends uniquely to a homomorphism $\psi: G(H) \rightarrow S$. An immediate consequence is that G is a covariant functor from the category of commutative semigroups to the category of abelian groups:

$$
\begin{aligned}
& \text { \{commutative semigroups }\} \xrightarrow{G} \text { \{abelian groups }\} \\
& \phi: H_{1} \rightarrow H_{2} \mapsto G(\phi): G\left(H_{1}\right) \rightarrow G\left(H_{2}\right)
\end{aligned}
$$

Example 2.

(a) $G(\mathbb{N},+)=(\mathbb{Z},+)$
(b) $G(\mathbb{N}, \cdot)=(\mathbb{Q} \geq 0, \cdot)$

Now we return to the situation where X is a compact Hausdorff space and $V(X)$ is the commutative monoid of isomorphism classes of vector bundles over X. In this case we use the Grothendieck group construction to define the group

$$
K^{0}(X)=G(V(X))=\{[E]-[F]: E, F=\text { vector bundles over } X\}
$$

which consists of all formal differences of isomorphism classes of vector bundles over X. Notice first of all that K^{0} is a contravariant functor from the category of compact spaces to the category of abelian groups because V is contravariant and G is covariant. First, V takes any continuous map $\phi: X \rightarrow Y$ between compact spaces and sends it to the map $\phi^{*}: V(Y) \rightarrow V(X)$ given by

$$
\phi^{*}:[E \rightarrow Y] \mapsto\left[\phi^{*} E \rightarrow X\right]
$$

where $\phi^{*} E \rightarrow X$ denotes the pull-back bundle induced by ϕ. Then, as ϕ^{*} is a morphism in the category of commutative monoids, the G functor turns it a morphism

$$
G\left(\phi^{*}\right): G(V(Y)) \rightarrow G(V(X))
$$

in the category of abelian groups. In other words this is the morphism $K^{0}(\phi)$: $K^{0}(X) \rightarrow K^{0}(Y)$, which we shall henceforth denote by ϕ^{*}.

Fact 1 (Homotopy invariance). Let X, Y be compact spaces and $f, g: X \rightarrow Y$ continuous maps. If f and g are homotopic then $f^{*}=g^{*}: K^{0}(X) \rightarrow K^{0}(Y)$.

Example 3. For any contractible space X we have $K^{0}(X) \simeq K^{0}\left(\left\{x_{0}\right\}\right.$ by homotopy invariance, and therefore

$$
K^{0}(X) \simeq K^{0}\left(\left\{x_{0}\right\}\right)=G\left(V\left(\left\{x_{0}\right\}\right)\right)=G(\mathbb{N} \cup\{0\})=\mathbb{Z}
$$

In particular, for any nonempty compact space X, the function $p: X \rightarrow\left\{x_{0}\right\}$ induces an injective morphism $p^{*}: K^{0}\left(\left\{x_{0}\right\}\right) \rightarrow K^{0}(X)$, and therefore $K^{0}(X)$ always contains a copy of \mathbb{Z}. We define the reduced K^{0}-group of X by modding out by any one of these copies of \mathbb{Z} :

$$
\widetilde{K}^{0}(X)=K^{0}(X) / \mathbb{Z}
$$

In order to get a working theory out of this K-group it's necessary to define K^{0} for non-compact spaces too. For any locally compact Hausdorff space X we let X^{+}denote the one-point compactification of X and then define

$$
K^{0}(X)=\widetilde{K}^{0}\left(X^{+}\right)
$$

i.e. the reduced K^{0}-group of the one-point compactification of X. For the remainder of this section we will assume X is a locally compact Hausdorff space. Given any closed subspace $Y \subseteq X$, the sequence

$$
Y \stackrel{i}{\hookrightarrow} X \xrightarrow{q} X / Y
$$

induces a short exact sequence of K^{0}-groups,

$$
K^{0}(X / Y) \xrightarrow{q^{*}} K^{0}(X) \xrightarrow{i^{*}} K^{0}(Y)
$$

given by the composition $[E] \mapsto\left[q^{*} E\right] \mapsto\left[i^{*} q^{*} E\right]$. Moreover, for each $n \geq 1$ we define the nth K-group as

$$
K^{n}(X)=K^{0}\left(X \times \mathbb{R}^{n}\right)
$$

and so the same argument gives another short exact sequence

$$
K^{n}(X / Y) \xrightarrow{q^{*}} K^{n}(X) \xrightarrow{i^{*}} K^{n}(Y)
$$

for every $n \geq 1$. For each n one can construct a connecting homomorphism $\delta: K^{n}(X) \rightarrow K^{n-1}(Y)$ and thereby get an infinite long exact sequence of K groups which terminates in $K^{0}(Y)$. In fact, the sequence is actually cyclical:

Fact 2 (Bott periodicity). For any locally compact Hausdorff space Z we have

$$
K^{n+2}(Z) \simeq K^{n}(Z) \text { for every } n \geq 0
$$

when complex vector bundles are considered. Furthermore, we have

$$
K^{n+8}(Z) \simeq K^{n}(Z) \text { for every } n \geq 0
$$

when real vector bundles are considered.
This beautiful fact reduces the study of K-groups to the study of the two groups $K^{0}(X)$ and $K^{1}(X)=K^{0}(X \times \mathbb{R})$ (when considering complex vector bundles over $X)$.

2 Operator K-theory

In this section we want to explain the following common description of operator K-theory:

Operator K-theory is a non-commutative analogue of topological K-theory for C^{*}-algebras. (Wikipedia)
We will conclude by explaining the connection between several equivalent definitions of the K^{0}-group of a C^{*}-algebra.

Suppose we have a compact Hausdorff space X. There is a one-to-one correspondence between vector bundles over X and finitely- generated projective modules over $C(X)$ given by the functor Γ sending any vector bundle E to the $C(X)$-module $\Gamma(E)$ of sections of E. Indeed, given any vector bundle $E \rightarrow X$, by Swan's theorem we can find a vector bundle $F \rightarrow X$ such that $E \oplus F \simeq X \times \mathbb{R}^{n}$ is a trivial bundle. Therefore

$$
\begin{aligned}
\Gamma(E) \oplus \Gamma(F) & \simeq \Gamma(E \oplus F) \\
& \simeq \Gamma\left(X \times \mathbb{R}^{n}\right) \\
& \simeq C(X)^{n}
\end{aligned}
$$

where the latter is a finitely-generated free module over $C(X)$. Thus, we have shown that $\Gamma(E)$ is a finitely-generated projective module over $C(X)$. It's not difficult to show that Γ gives a one-to-one correspondence by constructing an explicit "inverse" which associates to any such module M a vector bundle $\Psi(M) \rightarrow X$ such that $\Gamma(\Psi(M))=M$. This observation gives us the following interpretation of the group $K^{0}(X)$:

Fact 3. Let X be a compact Hausdorff space. Then $K^{0}(X)$ can be identified with the group of formal differences $[M]-[N]$ of isomorphism classes of finitely-generated projective modules over $C(X)$.

Now for any commutative unital C^{*}-algebra A, the Gelfand-Naimark theorem gives us an isometric $*$-isomorphism $A \simeq C(X)$ for some compact space X (recall that X consists of characters on A, and the $*$-isomorphism is given by $A \rightarrow C(X)$, $a \mapsto \widehat{a}$ where $\widehat{a}(\phi)=\phi(a)$ for every character $\phi)$. Therefore, it makes sense to define the K_{0} group of the C^{*}-algebra A by the prescription

$$
K_{0}(A)=K^{0}(X)
$$

Thus by Fact 3, we have a natural generalization to the non-commutative case: for any unital C^{*}-algebra A, let $K_{0}(A)$ be the group of formal differences of isomorphism classes $[M]-[N]$ of finitely-generated projective modules over A. In other words, if $M(A)$ denotes the monoid of isomorphism classes of finitelygenerated projective A-modules, then the K_{0}-group of A is the Grothendieck group

$$
K_{0}(A)=G(M(A))
$$

This is why the operator K-theory is often described as a non-commutative version of topological K-theory.

The definition of $K_{0}(A)$ we've taken here arises naturally from the topological K-theory group $K^{0}(X)$, but it's not always the most useful definition in practice. The group $K_{0}(A)$ can be realized in several other equivalent ways, which are often more concrete.

1. Let A be a unital C^{*}-algebra and define the matrix algebra of A as

$$
M_{\infty}(A)=\bigcup_{n \geq 1} M_{n}(A)
$$

and recall that two idempontents $p, q \in M_{\infty}(A)$ are orthogonal if $p q=q p=0$. In this case it makes sense to define their orthogonal sum $p \oplus q \in M_{\infty}(A)$. We say that two idempotents p and q are equivalent if they are similar in the matrix algebra, i.e. $a p a^{-1}=q$ for some invertible $a \in A$. In this case we write $p \sim q$.
Consider the set of equivalence classes of projections in the matrix algebra:

$$
V_{1}=\left\{[p]: p \in M_{\infty}(A) \text { idempotent }\right\}
$$

This set is a commutative semigroup with respect to the operation

$$
[p]+[q]=\left[p^{\prime} \oplus q^{\prime}\right]
$$

where $p^{\prime} \perp q^{\prime}, p^{\prime} \sim p$ and $q^{\prime} \sim q$.
2. By the Gelfand-Naimark-Segal construction we can find a faithful represention $A \rightarrow \mathbb{B}\left(H_{A}\right)$ of A as bounded operators on some Hilbert space H_{A} (this is the GNS representation). Let $\mathbb{K}\left(H_{A}\right)$ denote the set of compact operators on H_{A}, and consider the set of equivalence classes of projections

$$
V_{2}=\left\{[P]: P \in \mathbb{K}\left(H_{A}\right) \text { projection }\right\}
$$

Once again, this is a commutative semigroup with respect to the same operation of orthogonal sum as above.

Just like we did in section 1, we can consider the Grothendieck groups $G\left(V_{1}\right)$ and $G\left(V_{2}\right)$, which consist of formal differences of equivalence classes of idempotents and compact projections, respectively. Then

$$
K_{0}(A) \simeq G\left(V_{1}\right) \simeq G\left(V_{2}\right)
$$

so we have three equivalent realizations of the K_{0}-group of A. To see why these are isomorphic, let's write

$$
V=\{[M]: M=\operatorname{fgp} A \text {-module }\}
$$

so that $K_{0}(A)=G(V)$ by definition. We have isomorphisms

$$
\phi: V_{1} \rightarrow V, \quad[p] \mapsto\left[p\left(A^{n}\right)\right]
$$

and

$$
\varphi: V_{2} \rightarrow V, \quad[P] \mapsto\left[P\left(H_{A}\right)\right]
$$

which therefore induce isomorphisms on the respective Grothendieck groups.

References

[1] N.E. Wegge-Olsen, K-Theory and C^{*}-Algebras: A Friendly Approach, Oxford University Press, 1993
[2] William Arveson, An Invitation to C^{*}-Algebras, Springer, 1976
[3] Florin Boca's lecture notes

