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Abstract

Using the K0 group of a compact Hausdorff space to motivate the definition
of the K0 group of a C∗-algebra, we introduce operator K-theory as a non-
commutative analogue of topological K-theory.
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1 Topological K-theory
Given a locally compact Hausdorff space X, what are all of the possible vector
bundles over X? A reasonable approach to this question is to construct a group
K0(X) consisting of isomorphism classes of vector bundles over X, which might
encode some information about which vector bundles X admits.

First of all, suppose that X is compact. Let E → X be a vector bundle over
X. We let [E] denote the equivalence class of vector bundles isomorphic to E, and
consider the set of isomorphism classes:

V (X) = {[E] : E = vector bundle over X}

Note that V (X) is a commutative monoid with respect the operation of direct
sum of vector bundles over X. Namely, given two vector bundles p : E → X and
q : F → X we define their direct sum by

E ⊕ F =
⊔
x∈X

Ex ⊕ Fx

and

p⊕ q : E ⊕ F → X

(e, f) 7→ p(e) = q(f)

so that E ⊕ F → X is another vector bundle over X. The identity element of this
monoid is the rank-0 trivial bundle

[0] = [X × {x}]

for any x ∈ X. Unfortunately, V (X) is not a group as it lacks inverses.
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Example 1.

(a) When X = {x} is a single point, we have V (X) ' N ∪ {0}.
(b) Letting VR and VC refer to real and complex vector bundles respectively, we

have VC(S1) ' N ∪ {0} and VR(S1) ' (N ∪ {0})× Z2.

In order to turn V (X) into a group we will use the Grothendieck group
construction. The general idea is to turn a commutative semigroup into a group in
a “minimal” way. Given a commutative semigroup H and a subsemigroup K ⊆ H,
define an equivalence relation on the product H ×K by

(h1, k1) ∼ (h2, k2) ⇐⇒ (h1k2)x = (h2k1)x for some x ∈ K

Here we are thinking of the pair (h, k) ∈ H × K as a fraction h/k, so that,
heuristically speaking, (h1, k1) ∼ (h2, k2) holds if and only if h1/k1 = h2/k2. Then
we consider the set of equivalence classes

[H][K]−1 = (H ×K)/∼ = {[(h, k)]}

and note that this is a commutative monoid with respect to the multiplication
inherited from H:

[(h1, k1)] · [(h2, k2)] = [(h1h2, k1k2)]

where the identity element is
1 = [(x, x)]

for any x ∈ K. The point of this construction is that, in this quotient space, the
ordered pairs of elements of K are invertible: for any k1, k2 ∈ K we have

[(k1, k2)][(k2, k1)] = [(k1k2, k2k1)] = 1

which is to say that [(k1, k2)]
−1 = [(k2, k1)]. In essence, the commutative monoid

[H][K]−1 is obtained from H by inverting the elements of K; therefore, in the
special case that H = K, we obtain an abelian group

G(H) = [H][H]−1

called the Grothendieck group of H. We note that G(H) is the “minimal” group
extending the semigroup H in the sense that any homomorphism φ : H → S of
semigroups (which sends H to invertible elements of S) extends uniquely to a
homomorphism ψ : G(H)→ S. An immediate consequence is that G is a covariant
functor from the category of commutative semigroups to the category of abelian
groups:

{commutative semigroups} G−→ {abelian groups}
φ : H1 → H2 7→ G(φ) : G(H1)→ G(H2)

Example 2.

(a) G(N,+) = (Z,+)

(b) G(N, ·) = (Q≥0, ·)
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Now we return to the situation where X is a compact Hausdorff space and
V (X) is the commutative monoid of isomorphism classes of vector bundles over
X. In this case we use the Grothendieck group construction to define the group

K0(X) = G(V (X)) = {[E]− [F ] : E,F = vector bundles over X}

which consists of all formal differences of isomorphism classes of vector bundles
over X. Notice first of all that K0 is a contravariant functor from the category of
compact spaces to the category of abelian groups because V is contravariant and
G is covariant. First, V takes any continuous map φ : X → Y between compact
spaces and sends it to the map φ∗ : V (Y )→ V (X) given by

φ∗ : [E → Y ] 7→ [φ∗E → X]

where φ∗E → X denotes the pull-back bundle induced by φ. Then, as φ∗ is
a morphism in the category of commutative monoids, the G functor turns it a
morphism

G(φ∗) : G(V (Y ))→ G(V (X))

in the category of abelian groups. In other words this is the morphism K0(φ) :
K0(X)→ K0(Y ), which we shall henceforth denote by φ∗.

Fact 1 (Homotopy invariance). Let X,Y be compact spaces and f, g : X → Y
continuous maps. If f and g are homotopic then f∗ = g∗ : K0(X)→ K0(Y ).

Example 3. For any contractible space X we have K0(X) ' K0({x0} by homo-
topy invariance, and therefore

K0(X) ' K0({x0}) = G(V ({x0})) = G(N ∪ {0}) = Z

In particular, for any nonempty compact space X, the function p : X → {x0}
induces an injective morphism p∗ : K0({x0}) → K0(X), and therefore K0(X)
always contains a copy of Z. We define the reduced K0-group of X by modding
out by any one of these copies of Z:

K̃0(X) = K0(X)/Z.

In order to get a working theory out of this K-group it’s necessary to define K0

for non-compact spaces too. For any locally compact Hausdorff space X we let
X+ denote the one-point compactification of X and then define

K0(X) = K̃0(X+)

i.e. the reduced K0-group of the one-point compactification of X. For the
remainder of this section we will assume X is a locally compact Hausdorff space.
Given any closed subspace Y ⊆ X, the sequence

Y
i
↪−→ X

q−→ X/Y

induces a short exact sequence of K0-groups,

K0(X/Y )
q∗−→ K0(X)

i∗−→ K0(Y )
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given by the composition [E] 7→ [q∗E] 7→ [i∗q∗E]. Moreover, for each n ≥ 1 we
define the nth K-group as

Kn(X) = K0(X × Rn)

and so the same argument gives another short exact sequence

Kn(X/Y )
q∗−→ Kn(X)

i∗−→ Kn(Y )

for every n ≥ 1. For each n one can construct a connecting homomorphism
δ : Kn(X) → Kn−1(Y ) and thereby get an infinite long exact sequence of K-
groups which terminates in K0(Y ). In fact, the sequence is actually cyclical:

Fact 2 (Bott periodicity). For any locally compact Hausdorff space Z we have

Kn+2(Z) ' Kn(Z) for every n ≥ 0

when complex vector bundles are considered. Furthermore, we have

Kn+8(Z) ' Kn(Z) for every n ≥ 0

when real vector bundles are considered.

This beautiful fact reduces the study of K-groups to the study of the two groups
K0(X) and K1(X) = K0(X × R) (when considering complex vector bundles over
X).

2 Operator K-theory
In this section we want to explain the following common description of operator
K-theory:

Operator K-theory is a non-commutative analogue of topological
K-theory for C∗-algebras. (Wikipedia)

We will conclude by explaining the connection between several equivalent definitions
of the K0-group of a C∗-algebra.

Suppose we have a compact Hausdorff space X. There is a one-to-one cor-
respondence between vector bundles over X and finitely- generated projective
modules over C(X) given by the functor Γ sending any vector bundle E to the
C(X)-module Γ(E) of sections of E. Indeed, given any vector bundle E → X, by
Swan’s theorem we can find a vector bundle F → X such that E ⊕ F ' X × Rn

is a trivial bundle. Therefore

Γ(E)⊕ Γ(F ) ' Γ(E ⊕ F )

' Γ(X × Rn)

' C(X)n

where the latter is a finitely-generated free module over C(X). Thus, we have shown
that Γ(E) is a finitely-generated projective module over C(X). It’s not difficult to
show that Γ gives a one-to-one correspondence by constructing an explicit “inverse”
which associates to any such module M a vector bundle Ψ(M) → X such that
Γ(Ψ(M)) = M . This observation gives us the following interpretation of the group
K0(X):
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Fact 3. Let X be a compact Hausdorff space. Then K0(X) can be identified with
the group of formal differences [M ]−[N ] of isomorphism classes of finitely-generated
projective modules over C(X).

Now for any commutative unital C∗-algebra A, the Gelfand-Naimark theorem
gives us an isometric ∗-isomorphism A ' C(X) for some compact space X (recall
that X consists of characters on A, and the ∗-isomorphism is given by A→ C(X),
a 7→ â where â(φ) = φ(a) for every character φ). Therefore, it makes sense to
define the K0 group of the C∗-algebra A by the prescription

K0(A) = K0(X).

Thus by Fact 3, we have a natural generalization to the non-commutative case:
for any unital C∗-algebra A, let K0(A) be the group of formal differences of
isomorphism classes [M ] − [N ] of finitely-generated projective modules over A.
In other words, if M(A) denotes the monoid of isomorphism classes of finitely-
generated projective A-modules, then the K0-group of A is the Grothendieck
group

K0(A) = G(M(A)).

This is why the operator K-theory is often described as a non-commutative version
of topological K-theory.

The definition of K0(A) we’ve taken here arises naturally from the topological
K-theory group K0(X), but it’s not always the most useful definition in practice.
The group K0(A) can be realized in several other equivalent ways, which are often
more concrete.

1. Let A be a unital C∗-algebra and define the matrix algebra of A as

M∞(A) =
⋃
n≥1

Mn(A)

and recall that two idempontents p, q ∈M∞(A) are orthogonal if pq = qp = 0.
In this case it makes sense to define their orthogonal sum p⊕ q ∈ M∞(A).
We say that two idempotents p and q are equivalent if they are similar in
the matrix algebra, i.e. apa−1 = q for some invertible a ∈ A. In this case we
write p ∼ q.
Consider the set of equivalence classes of projections in the matrix algebra:

V1 = {[p] : p ∈M∞(A) idempotent}

This set is a commutative semigroup with respect to the operation

[p] + [q] = [p′ ⊕ q′]

where p′ ⊥ q′, p′ ∼ p and q′ ∼ q.
2. By the Gelfand-Naimark-Segal construction we can find a faithful represention

A→ B(HA) of A as bounded operators on some Hilbert space HA (this is
the GNS representation). Let K(HA) denote the set of compact operators
on HA, and consider the set of equivalence classes of projections

V2 = {[P ] : P ∈ K(HA) projection}

Once again, this is a commutative semigroup with respect to the same
operation of orthogonal sum as above.
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Just like we did in section 1, we can consider the Grothendieck groups G(V1)
and G(V2), which consist of formal differences of equivalence classes of idempotents
and compact projections, respectively. Then

K0(A) ' G(V1) ' G(V2)

so we have three equivalent realizations of the K0-group of A. To see why these
are isomorphic, let’s write

V = {[M ] : M = fgp A-module}

so that K0(A) = G(V ) by definition. We have isomorphisms

φ : V1 → V, [p] 7→ [p(An)]

and
ϕ : V2 → V, [P ] 7→ [P (HA)]

which therefore induce isomorphisms on the respective Grothendieck groups.
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