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Abstract

We present a proof of the closed subgroup theorem for Lie groups using the
machinery of Lie algebras and exponential maps. Along the way, we introduce all
of the necessary background information about vector fields and Lie algebras.
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1 Preliminaries
Let X be a smooth vector field on a smooth manifold M . Recall that we can
consider X as a map X : C∞(M)→ C∞(M) by defining (Xf)(p) = Xpf for any
f ∈ C∞(M) and p ∈M , because each tangent vector Xp is a derivation of smooth
functions. Since the action of a tangent vector is locally determined, so too is the
function Xf , in the sense that

(Xf)|U = X(f |U )

for any open subset U ⊆M . As a result, we obtain a useful smoothness criterion
for vector fields:

Fact 1 (Smoothness criterion for vector fields). Let M be a smooth manifold and
X : M → TM any vector field on M . The following are equivalent:

(i) X is smooth.

(ii) For every f ∈ C∞(M), Xf is smooth on M .

(iii) For every open U ⊆M and every f ∈ C∞(U), Xf is smooth on U .



2

Given a smooth map F : M → N and a vector field X on M , a pushfoward
of X along F is a smooth vector field Y on N satisfying

YF (p) = dFp(Xp)

for every p ∈M . The pushforward of a given vector field along a given map need
not exist; for example, if F is not surjective then such a vector field will not be
defined outside the image of F . Or, if F is not injective, then the aforementioned
formula may not produce a well-defined function. In fact, a pushforward may fail
to exist even when F is a smooth bijection, because the vector field Y can fail to
be smooth without the smoothness of F−1.

Example 1 (Pushforward does not always exist). Let F : R→ R be the smooth
bijection given by F (x) = x3, and let X = ∂/∂t denote the coordinate vector field
on R. If Yx = y(x)∂/∂t|x is a pushforward of X along F , then for every x ∈ R we
have

Yx = dFF−1(x)(XF−1(x)) = dFx1/3

(
∂

∂t

∣∣∣∣
x1/3

)
= 3x2/3

∂

∂t

∣∣∣∣
x1/3

which is not a pushforward because it’s not smooth (at x = 0).

Despite these examples, there are some important situations where the pushfor-
ward is always uniquely defined; for example, when F : M → N is a diffeomorphism.
In this case, for any smooth vector field X on M , we can define a vector field on
N by

Y = dF ◦X ◦ F−1 : N
F−1

−−→M
X−→ TM

dF−−→ TN

Evidently Y is smooth as a composition of smooth maps, and it satisfies YF (p) =
dFp(Xp) by definition, so Y is a pushforward of X. For any f ∈ C∞(N), the
pushforward Y acts on f according to the formula

(Y f)F (p) = dFp(Xp)f = Xp(f ◦ F )

or more succinctly, Y f ◦ F = X(f ◦ F ). We summarize this observation in the
following fact:

Fact 2 (Pushforward along a diffeomorphism). If F : M → N is a diffeomorphism,
then any vector field X : M → TM has a unique pushforward F∗X : N → TN
defined by the equivalent formulas

F∗X = dF ◦X ◦ F−1

(F∗X)F (p) = dFp(Xp)

(F∗X)f ◦ F = X(f ◦ F )

for every f ∈ C∞(N) and p ∈M .

Let U ⊆ Rn be open. A k-slice of U is a subset of the form

S = {(x1, . . . , xk, ck+1, . . . , cn) ∈ U} ⊆ U

for some constants ck+1, . . . , cn ∈ R. Thus, a k-slice is an affine subset of U
homeomorphic to an open subset of Rk. Now take a smooth n-manifold M and
let ϕ : U ⊆ M → Rn be a smooth chart on M . A k-slice of U ⊆ M is a subset
S ⊆ U such that ϕ(S) is a k-slice of ϕ(U) ⊆ Rn.
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We say that a subset N ⊆M satisfies the local k-slice condition if: for every
p ∈ N there exists a smooth chart ϕ : U ⊆ M → Rn for M around p such that
N ∩ U is a k-slice of U ; i.e. ϕ(N ∩ U) is a k-slice of ϕ(U). Such a chart (U,ϕ) is
called a slice chart for N in M . Roughly speaking, the local k-slice condition
says that, near any point, N is locally homeomorphic to a k-dimensional affine
open subset of Rn.

Theorem 1 (Local slice criterion). Let M be a smooth manifold. A subset N ⊆M
is an embedded k-dimensional submanifold of M if and only if N satisfies the local
k-slice condition.

Recall that the differential of a smooth map can be calculated using smooth
curves:

Fact 3. Let F : M → N be a smooth map and let p ∈M . For any v ∈ TpM we
have

dFp(v) = (F ◦ γ)′(0)

for any smooth curve γ : I →M satisfying γ(0) = p and γ′(0) = v.

A Lie group is a group which is also a smooth manifold, such that the multipli-
cation and inversion maps are smooth. For the purposes of this note we assume
that the reader has a basic familiarity with Lie groups. Given a Lie group G, a
Lie subgroup of G is a subgroup H ⊆ G endowed with a topology and a smooth
structure making it into both a Lie group and an immersed submanifold of G.

In particular, a subgroup S ⊆ G which is an embedded submanifold is also an
immersed submanifold, and it’s easy to see that the multiplication and inversion
in G restrict to smooth maps in S, so S is a Lie subgroup. Thus we have:

Fact 4 (Embedded subgroups are Lie subgroups). Let G be a Lie group and
H ⊆ G a subgroup that is also an embedded submanifold. Then H is a Lie subgroup
of G.

On the other hand, a Lie subgroup need not be an embedded submanifold: take
an irrational winding on the 2-torus, for example. Thus, it’s natural to wonder:
when is a Lie subgroup an embedded submanifold? How can we characterize all of
the Lie subgroups? The main goal of this note is to prove the closed subgroup
theorem: a closed subgroup of a Lie group is an embedded Lie subgroup. In
order to prove this theorem we will develop the machinery of Lie algebras and
exponential maps.

2 Lie algebras
A Lie algebra is a real vector space g equipped with an operation [·, ·] : g×g→ R
called a bracket, such that:

(i) The bracket is bilinear:

[au+ bv, w] = a[u,w] + b[v, w]

[u, cv + dw] = c[u, v] + d[u,w]

for every u, v, w ∈ g and a, b, c, d ∈ R.
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(ii) The bracket is antisymmetric:

[u, v] = −[v, u]

for every u, v ∈ g.

(iii) The bracket satisfies the Jacobi identity:

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0

for every u, v, w ∈ g.

Let g be a Lie algebra. We establish the following basic definitions:

• A Lie subalgebra of g is a linear subspace h ⊆ g which is closed under
brackets; i.e. h is itself a Lie algebra with respect to (the restriction of) the
same bracket.

• A linear map A : g → h between Lie algebras is called a Lie algebra
homomorphism if A preserves brackets; that is,

A[u, v] = [Au,Av]

for every u, v ∈ g.

• A bijective Lie algebra homomorphism is called a Lie algebra isomor-
phism.

Example 2 (Lie algebras).

(a) The vector space M(n,R) of all n× n real matrices is an n2-dimensional Lie
algebra with respect to the commutator bracket [A,B] = AB −BA.

(b) Similarly, the vector space M(n,C) of all n × n complex matrices is a Lie
algebra with respect to the commutator bracket.

(c) In general, for any finite-dimensional vector space V , the vector space Hom(V )
consisting of all linear maps V → V is a Lie algebra with respect to the
commutator bracket [A,B] = A ◦B −B ◦A.

(d) R3 is a Lie algebra with bracket given by the cross product of vectors:
[u, v] = u× v.

(e) Given a smooth manifold M , the vector space Γ(TM) of smooth vector fields
on M is a Lie algebra with respect to the bracket [X,Y ] = XY −Y X. Recall
that vector fields on M act as maps C∞(M) → C∞(M), so here [X,Y ] is
the vector field given by

[X,Y ]f = X(Y f)− Y (Xf)

for every f ∈ C∞M .

(f) As we shall see in the next section, given a Lie group G, the subspace of
Γ(TG) consisting of all left-invariant vector fields on G is a Lie algebra with
respect to the same bracket [X,Y ] = XY − Y X. This is the Lie algebra
associated with the Lie group G.

Many standard linear algebra facts carry over to the setting of Lie algebras.
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Fact 5. Let A : g → h be a Lie algebra homomorphism. Then kerA ⊆ g and
imA ⊆ h are Lie subalgebras.

Proof. The kernel and image of A are linear subspaces for algebraic reasons, so it
suffices to check that they are closed under the brackets on g and h, respectively.
For any u, v ∈ kerA we have

A[u, v] = [Au,Av] = [0, 0] = 0

so [u, v] ∈ kerA and the kernel is closed under brackets. Similarly, for any u, v ∈ g
the equation [Au,Av] = A[u, v] implies that [Au,Av] ∈ imA; hence the image is
closed under brackets.

3 The Lie algebra of a Lie group
One of the most important examples of a Lie algebra is the vector space of smooth
vector fields on a smooth manifold; especially because every Lie group is associated
with a particular Lie algebra consisting of left-invariant vector fields. In this section
we will explain how this relationship works.

Let X be a smooth vector field on a smooth manifold M , considered as a map
X : C∞(M) → C∞(M). This map is linear over R, and it satisfies the product
rule

X(fg)(p) = g(p)Xp(f) + f(p)Xp(g)

i.e. X(fg) = gXf + fXg. These properties follow immediately from the corre-
sponding properties for derivations, and in fact, smooth vector fields are completely
characterized as maps C∞(M)→ C∞(M) satisfying these two properties.

Let M be a smooth manifold and let X,Y be smooth vector fields on M . Then
we can apply both X and Y to any function f ∈ C∞(M) to get a map f 7→ Y Xf ,
however this map does not satisfy the product rule, so Y X does not define a
vector field on M . Instead, we can combine X and Y by essentially taking their
commutator: [X,Y ] = XY − Y X. This does define a smooth vector field on M
called the Lie bracket of X and Y .

Fact 6. For any smooth vector fields X and Y on M , the Lie bracket [X,Y ] =
XY − Y X is a smooth vector field on M .

Proof. Based on the preceding discussion, it suffices to show that [X,Y ] is a linear
map C∞(M)→ C∞(M) satisfying the product rule. Linearity is pretty clear:

[X,Y ](af + bg) = X(Y (af + bg))− Y (X(af + bg))

= X(aY f + bY g)− Y (aXf + bXg)

= aXY f + bXY g − aY Xf − bY Xg
= a(XY − Y X)f + b(XY − Y X)g

= a[X,Y ]f + b[X,Y ]g
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for any f, g ∈ C∞(M) and a, b ∈ R. Now we check the product rule:

[X,Y ](fg) = X(Y (fg))− Y (X(fg))

= X(fY (g) + gY (f))− Y (fX(g) + gX(f))

= fXY (g) + Y (g)X(f) + gXY (f) +X(g)Y (f)

− [fY X(g) + Y (f)X(g)]− [gY X(f) +X(f)Y (g)]

= fXY (g)− fY X(g) + gXY (f)− gY X(f)

= f(XY − Y X)g + g(XY − Y X)f

= f [X,Y ]g + g[X,Y ]f

as desired.

Fact 7 (Properties of the Lie bracket). The Lie bracket on the space of smooth
vector fields on a smooth manifold M satisfies:

(i) Bilinearity:

[aX + bY, Z] = a[X,Z] + b[Y, Z]

[X, cY + dZ] = c[X,Y ] + d[X,Z]

for every X, Y , and Z ∈ Γ(TM) and a, b, c, d ∈ R.
(ii) Antisymmetry:

[X,Y ] = −[Y,X]

for every X,Y ∈ Γ(TM).
(iii) The Jacobi identity:

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0

for every X,Y , and Z ∈ Γ(TM).
(iv) For every f, g ∈ C∞(M):

[fX, gY ] = fg[X,Y ] + (fXg)Y − (gY f)X.

Proof. Bilinearity and antisymmetry follow immediately from the definition of
the Lie bracket. For the Jacobi identity, a direct computation shows that for any
f ∈ C∞(M),

[X, [Y,Z]]f + [Y, [Z,X]]f + [Z, [X,Y ]]f = X[Y, Z]f − [Y,Z]Xf + Y [Z,X]f

− [Z,X]Y f + Z[X,Y ]f − [X,Y ]Zf

= X(Y Z − ZY )f − (Y Z − ZY )Xf

+ Y (ZX −XZ)f − (ZX −XZ)Y f

+ Z(XY − Y X)f − (XY − Y X)Zf

= 0

after expanding the last line and seeing that the terms cancel in pairs. For property
(iv), we have for any h ∈ C∞(M),

[fX, gY ]h = (fX)(gY )h− (gY )(fX)h

= fX(gY h)− gY (fXh)

= f
(
gX(Y h) + (Y h)(Xg)

)
− g
(
fY (Xh) + (Xh)(Y f)

)
= f(gX)(Y h) + f(Y h)(Xg)− g(fY )(Xh)− g(Xh)(Y f)

= fg[X,Y ]h+ (fXg)Y h− (gY f)Xh
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As a result of Facts 6 and 7, we have shown that the vector space Γ(TM) of
smooth vector fields on M is a Lie algebra with respect to the Lie bracket. Here is
one more useful fact: the Lie bracket is preserved by pushforwards.

Fact 8 (Pushforward invariance of the Lie bracket). Let F : M → N be a smooth
map, and let X1 and X2 be smooth vector fields with well-defined pushforward
F∗X1 and F∗X2 along F . Then the pushforward of [X1, X2] is well-defined and

F∗[X1, X2] = [F∗X1, F∗X2].

Proof. Write Y1 = F∗X1 and Y2 = F∗X2. Using Fact 2, for any f ∈ C∞(N) we
calculate

X1X2(f ◦ F ) = X1(Y2f ◦ F ) = (Y1Y2f) ◦ F
X2X1(f ◦ F ) = X2(Y1f ◦ F ) = (Y2Y1f) ◦ F

and therefore

(X1X2 −X2X1)(f ◦ F ) = (Y1Y2f) ◦ F − (Y2Y1f) ◦ F
= ([Y1, Y2]f) ◦ F

which means that

F∗[X1, X2] = [Y1, Y2] = [F∗X1, F∗X2],

as desired.

In this note we will focus on Lie groups with vector fields satisfying an additional
left-invariance condition. Let G be a Lie group, and for any g ∈ G let Lg : G→ G
denote the left-multiplication diffeomorphism. A smooth vector field X on G is
left-invariant if it satisfies

(Lg)∗X = X

for every g ∈ G. In other words, this means that

d(Lg)g′(Xg′) = Xgg′

for every g, g′ ∈ G. Notice that a left-invariant vector field X on G is completely
determined by its value at the identity element e ∈ G: for any g ∈ G we have

Xg = Xge = d(Lg)e(Xe).

Furthermore, note that the property of being left-invariant is preserved by linear
combinations because if X and Y are left-invariant vector fields on G then we have

(Lg)∗(aX + Y )f = (aX + Y )(f ◦ Lg) ◦ L−1g
= aX(f ◦ Lg) ◦ L−1g + Y (f ◦ Lg) ◦ L−1g
= a(Lg)∗(X)f + (Lg)∗(Y )f

for any f ∈ C∞(M), a ∈ R and g ∈ G. Left-invariance is also preserved by Lie
brackets because by Fact 8 we have

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ]
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which means that [X,Y ] is left-invariant. In summary, we have shown that the
space of smooth left-invariant vector fields on G is a Lie subalgebra of Γ(TG); in
particular it is a Lie algebra with respect to the Lie bracket. We denote this Lie
algebra by the symbol Lie(G) and call it the Lie algebra of the Lie group G.

Since a left-invariant vector field on a Lie group G is determined by its value
at the identity, it is reasonable to expect that there should be a one-to-one
correspondence between the space Lie(G) of left-invariant vector fields, and the
space TeG of tangent vectors at the identity. This observation leads to the following
fact.

Fact 9. Let G be a Lie group. The evaluation map

ε : Lie(G)→ TeG, ε(X) = Xe

is a linear isomorphism. Thus, Lie(G) is a finite-dimensional vector space with
dim Lie(G) = dimG.

Proof. • ε is linear: for X,Y ∈ Lie(G) and a, b ∈ R we have

ε(aX + bY ) = (aX + bY )e = aXe + bYe = aε(X) + bε(Y ).

• ε is injective. Suppose that ε(X) = Xe = 0. Since X is left-invariant, we
have

Xg = Xge = d(Lg)e(Xe) = d(Lg)e(0) = 0

for every g ∈ G, so X = 0. Thus ker ε = 0 and ε is injective.

• ε is surjective. Let v ∈ TeG be arbitrary. We want to find a left-invariant
smooth vector field X such that ε(X) = Xe = v; i.e. X yields the vector v
at the identity. If X satisfies this condition, then by left-invariance we must
have

Xg = Xge = d(Lg)e(Xe) = d(Lg)e(v)

for every g ∈ G. Thus we define a vector field vL : G→ TG by the formula
vL(g) = d(Lg)e(v). We need to show that vL ∈ Lie(G), i.e. that it is smooth
and left-invariant. In order to show that vL is smooth, by Fact 1 it suffices
to show that vLf is a smooth function on G for any f ∈ C∞(G). We have

(vLf)(g) = vL(g)(f) = d(Lg)e(v)(f) = v(f ◦ Lg).

Choose any smooth curve γ : (−δ, δ)→ G with γ(O) = g and γ′(0) = v. We
compute

(vLf)(g) = v(f ◦ Lg)
= γ′(0)(f ◦ Lg)
= (f ◦ Lg ◦ γ)′(0)

=
d

dt

∣∣∣∣
t=0

(f ◦ Lg ◦ γ)(t).

Define α : (−δ, δ)×G→ R by α(t, g) = (f ◦Lg ◦ γ)(t). Then α is smooth in
both t and g, and

vL(f)(g) =
d

dt

∣∣∣∣
t=0

(f ◦ Lg ◦ γ)(t) =
∂α

∂t
(0, g)
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which is a smooth function of g. Hence vLf is smooth on G and vL is a
smooth vector field. Finally, we check that vL is left-invariant. For any
g, h ∈ G we have

d(Lg)h(vL(h)) = d(Lg)h(d(Lh)e(v))

= d(Lg ◦ Lh)e(v)

= d(Lgh)e(v)

= vL(gh).

Hence vL ∈ Lie(G) satisfies ε(vL) = vL(e) = v and ε is surjective.

Following the notation of Fact 9, for any tangent vector v ∈ TeG we will let
vL denote the unique left-invariant smooth vector field on G whose value at the
identity is v.

Note that Fact 9 also shows that every left-invariant vector field on a Lie group
is smooth: if X is a left-invariant vector field on a Lie group G, then evidently
X = (Xe)

L and the latter is a smooth vector field by Fact 9. Hence the modifier
“smooth” in the phrase “smooth left-invariant vector field” is redundant.

Now that we have a linear isomorphism between the Lie algebra Lie(G) and the
vector space TeG, we can endow the latter with a canonical Lie algebra structure:
there is a unique bracket on TeG for which the evaluation map ε is an isomorphism
of Lie algebras. Precisely, for any v, w ∈ TeG we define the bracket

[v, w] = ε[ε−1v, ε−1w].

We can go further still: for any g ∈ G we have a natural isomorphism d(Lg)e :
TeG→ TgG, and so we can endow TgG with a Lie algebra structure by selecting
the unique bracket for which the linear isomorphism d(Lg)e becomes a Lie algebra
isomorphism. Namely, for any σ, τ ∈ TgG we could define the bracket

[σ, τ ] = d(Lg)e[d(Lg)
−1
e (σ), d(Lg)

−1
e (τ)]

and thus every tangent space TgG has a Lie algebra structure such that Lie(G) '
TgG as Lie algebras. Since the manifold G has some additional algebraic structure,
it makes sense that its tangent spaces would possess some additional algebraic
structure too. In any case, it makes sense to focus on TeG in particular because
the identity element is distinguished, and because any left-invariant vector field on
G is determined by its value at e ∈ G.

Example 3.

(a) Let G = Rn with respect to vector addition. Left translation by b ∈ Rn is
given by the affine transformation Lb(x) = b+ x, whose differential d(Lb) is
represented by the identity matrix in standard coordinates. Thus, a vector
field X on Rn is left-invariant if and only if, for every a, b ∈ Rn,

d(Lb)a(Xa) = Xa+b ⇐⇒ Xa = Xa+b

and this holds if and only if the components Xi of X are constant. Since
the Lie bracket of two constant vector fields is zero, Lie(Rn) is just Rn itself
equipped with the zero bracket.
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(b) Let G = S1 with respect to multiplication in C. Left translation in S1 has
the local coordinate representation θ 7→ θ + c for some fixed c ∈ R. The
differential of this map is represented by the 1 × 1 identity matrix, so the
coordinate vector field d/dθ on S1 is left-invariant. Thus d/dθ is a basis for
the Lie algebra of S1 (equipped with the zero bracket) and we conclude that
Lie(S1) = R.

(c) Let G = Tn = S1 × · · · × S1 denote the n-dimensional torus. Following the
same logic as above, the coordinate vector fields {∂/∂θ1, . . . , ∂/∂θn} form
a basis for the Lie algebra of Tn equipped with the zero bracket, hence
Lie(Tn) = Rn.

Any Lie group homomorphism F : G→ H induces a Lie algebra homomorphism
F∗ : Lie(G)→ Lie(H) defined by the formula

F∗(X) = dFe(Xe)
L = ε−1(dFe(Xe)).

Note that F∗ = ε−1 ◦ dFe ◦ ε if we denote the evaluation maps for both Lie(G) and
Lie(H) by the same symbol ε. To see why this defines a Lie algebra homomorphism,
notice that F∗(X) really is a pushforward of X along F : since F is a group
homomorphism we have

F (gg′) = F (g)F (g′)⇒ F (Lg(g
′)) = LF (g)(F (g′))

for every g, g′ ∈ G, so F ◦ Lg = LF (g) ◦ F . Differentiating both sides of this
equation, we obtain

dF ◦ d(Lg) = d(LF (g)) ◦ dF.

For any X ∈ Lie(G), let Y = dFe(Xe)
L ∈ Lie(H) so that Ye = dFe(Xe). It follows

that

dFg(Xg) = dFg(d(Lg)e(Xe))

= d(LF (g))e(dFe(Xe))

= d(LF (g))e(Ye)

= YF (g),

and this means exactly that Y = F∗(X) is a pushforward of X along F . Hence
F∗ preserves Lie brackets by Fact 8, and F∗ is clearly linear as a composition of
linear maps. We conclude that F∗ is a well-defined Lie algebra homomorphism,
called the induced Lie algebra homomorphism. This concept is important
because it allows us to pass information between Lie groups and their associated
Lie algebras.

Fact 10 (Properties of induced homomorphisms).

(i) The identity map idG : G→ G induces the identity map idLie(G) = (idG)∗ :
Lie(G)→ Lie(G).

(ii) If F1 : G → H and F2 : H → K are Lie group homomorphisms, then
(F2 ◦ F1)∗ = (F2)∗ ◦ (F1)∗ : Lie(G)→ Lie(K).

(iii) An isomorphism of Lie groups F : G → H induces an isomorphism of Lie
algebras F∗ : Lie(G)→ Lie(H). Thus, G ' H implies that Lie(G) ' Lie(H).
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Proof. (i) We have (idG)∗ = ε−1 ◦ d(idG)e ◦ ε = ε−1 ◦ ε = idLie(G) since the
differential of the identity map on G is the identity map on TeG.

(ii) For the sake of precision let us denote the evaluation maps for G,H and K
by εG, εH and εK . We have by definition,

(F2)∗ ◦ (F1)∗ = (ε−1K ◦ d(F2)e ◦ εH) ◦ (ε−1H ◦ d(F1)e ◦ εG)

= ε−1K ◦ d(F2)e ◦ d(F1)e ◦ εG
= ε−1K ◦ d(F2 ◦ F1)e ◦ εG
= (F2 ◦ F1)∗

(iii) This follows immediately from (i) and (ii), because if F : G → H is an
isomorphism then F∗ ◦ F−1∗ = (F ◦ F−1)∗ = (idH)∗ = idLie(H) and similarly
F−1∗ ◦ F∗ = idLie(G), so F∗ is a Lie algebra isomorphism.

In other words, Fact 10 says that we have a functor from the category of Lie
groups into the category of Lie algebras, sending any Lie group to its associated
Lie algebra Lie(G), and any morphism F of Lie groups to its induced morphism
F∗ of Lie algebras.

Let G be a Lie group and H ⊆ G a Lie subgroup. We might expect Lie(H) to
be a Lie subalgebra of Lie(G), but the elements of Lie(H) are vector fields on H
and not G, so technically speaking they are not elements of Lie(G). Nonetheless,
we can still identify Lie(H) with a Lie subalgebra of Lie(G) in a canonical way.

Fact 11. Let H ⊆ G be a Lie subgroup and i : H ↪→ G the inclusion. Then Lie(H)
is isomorphic to the Lie subalgebra of Lie(G) defined as

h = i∗(Lie(H)) = {X ∈ Lie(G) : Xe ∈ TeH}

Proof. The inclusion i : H ↪→ G is a Lie group homomorphism inducing a Lie
algebra homomorphism i∗ : Lie(H) → Lie(G), so the image h = i∗(Lie(H)) is a
Lie subalgebra of Lie(G) by Fact 5. Note that the differential die : TeH ↪→ TeG
is injective, so i∗ = ε−1 ◦ die ◦ ε is injective as a composition of injections. Thus
i∗ : Lie(H)→ h is an isomorphism onto its image and we conclude that h ' Lie(H)
as Lie algebras.

We also note that h consists of those left-invariant vector fields on G tangent to
H at e, because Y ∈ h if and only if Y = i∗(X) for some X ∈ Lie(H), if and only if
Ye = die(Xe). This is equivalent to saying that Ye ∈ TeH since die : TeH ↪→ TeG
is the inclusion of tangent spaces.

Fact 12. Let F : G→ H be a Lie group homomorphism and F∗ : Lie(G)→ Lie(H)
its induced Lie algebra homomorphism. Then

(i) kerF∗ = Lie(kerF ) (under the identification of Fact 11).

(ii) If F is an immersion, then imF∗ = Lie(imF ) (under the identification of
Fact 11).

(iii) If F is a local diffeomorphism, then F∗ is an isomorphism of Lie algebras.
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Proof. (i) Let i : kerF ↪→ G denote the inclusion. We show that kerF∗ =
i∗(Lie(kerF )). Let X ∈ Lie(G) be arbitrary, then

X ∈ kerF∗ ⇐⇒ Y = F∗(X) = 0

⇐⇒ Ye = dFe(Xe) = 0

⇐⇒ Xe ∈ ker dFe

But ker dFe = Te kerF , so X ∈ kerF∗ holds if and only if Xe ∈ Te kerF ,
which is to say that kerF∗ = i∗(Lie(kerF )) as desired.

(ii) Let i : imF ↪→ H denote the inclusion. We show that imF∗ = i∗(Lie(imF )).
Let Y ∈ Lie(H) be arbitrary, then

Y ∈ imF∗ ⇐⇒ Y = F∗(X) for some X ∈ Lie(G)

⇐⇒ Ye = dFe(Xe)

⇐⇒ Ye ∈ dFe(TeG)

On the other hand, since F is an immersion we have that dFe(TeG) = Te imF ,
so Y ∈ imF∗ holds if and only if Ye ∈ Te imF . Thus imF∗ = i∗(Lie(imF ))
as desired.

(iii) If F is a local diffeomorphism then dFe : TeG→ TeH is a linear isomorphism,
so F∗ = ε−1 ◦ dFe ◦ ε is an isomorphism.

4 Lie algebras of matrix groups
Some of the most important examples of Lie groups are the matrix groups such as
M(n,R),GL(n,R), O(n), U(n), and so on. In this section we will describe the Lie
algebras associated with some of these Lie groups.

First of all, let’s consider the general linear group GL(n,R). Since GL(n,R)
is an open submanifold of M(n,R), we have a linear isomorphism TI GL(n,R) '
M(n,R); furthermore, by Fact 9 the evaluation map provides an isomorphism
Lie(GL(n,R)) ' TI GL(n,R). By combining these isomorphisms we find that

Lie(GL(n,R)) ' TI GL(n,R) 'M(n,R)

On the other hand, Lie(GL(n,R)) and M(n,R) are both Lie algebras equipped
with their own brackets, the former is the Lie bracket on vector fields, and the latter
is the commutator bracket on matrices. A natural question arises: what is the
relationship between these two Lie algebra structures? In fact, the aforementioned
vector space isomorphism Lie(GL(n,R)) ' M(n,R) is actually an isomorphism
of Lie algebras. Before proving this assertion, let’s recall some basic information
about the tangent space of GL(n,R):

1. Since M(n,R) is a vector space we have a natural isomorphism

TIM(n,R)→M(n,R)

∂

∂xij

∣∣∣∣
I

7→ Eij
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where Eij ∈M(n,R) is the matrix whose (i, j)-entry is 1 and all others are
zero, and ∂/∂xij |I denotes the directional derivative at I in the direction of
Eij ; i.e.

∂

∂xij

∣∣∣∣
I

(f) =
d

dt

∣∣∣∣
t=0

f(I + tEij)

for every smooth f : M(n,R)→ R.
2. Since GL(n,R) is an open submanifold of M(n,R), we have an isomorphism

induced by the inclusion, hence

TI GL(n,R) = span

{
∂

∂xij

∣∣∣∣
I

}
3. Combining the previous two remarks, the isomorphism TI GL(n,R) 'M(n,R)

is given by ∑
i,j

Aij
∂

∂xij

∣∣∣∣
I

7→ (Aij)

Fact 13 (Lie algebra of general linear group). The composition of natural isomor-
phisms

Lie(GL(n,R)) ' TI GL(n,R) 'M(n,R)

yields a Lie algebra isomorphism.

Proof. Under the right-hand isomorphism, any matrix A = (Aij) ∈ M(n,R)
uniquely determines a tangent vector

∑
i,j Aij∂/∂xij |I ∈ TI GL(n,R), which in

turn (under the left-hand isomorphism) determines a left-invariant vector field
AL ∈ Lie(GL(n,R)) defined by

AL|Y = d(LY )I

∑
i,j

Aij
∂

∂xij

∣∣∣∣
I

 = d(LY )I(A)

for any Y ∈ GL(n,R). Thus we want to show that the vector space isomorphism
M(n,R)→ Lie(GL(n,R)) given by A 7→ AL is actually a Lie algebra isomorphism;
in other words we must show that [A,B]L = [AL, BL] for any A,B ∈ M(n,R),
where the left-hand bracket is the commutator of matrices and the right-hand
bracket is the Lie bracket of vector fields.

Notice that the left multiplication map LY : GL(n,R) → GL(n,R) given
by B 7→ Y B is (the restriction of) a linear map, so its differential is simply
d(LY )I = LY : M(n,R)→M(n,R). As a result, we have

AL|Y = d(LY )I

∑
i,j

Aij
∂

∂xij

∣∣∣∣
I


=
∑
i,j

(∑
k

YikAkj

)
∂

∂xij

∣∣∣∣
Y

= Y A

Fix any two arbitrary matrices A,B ∈M(n,R), and fix the following shorthand:
we define functions αij : M(n,R)→ R and βpq : M(n,R)→ R by

αij(Y ) = (Y A)ij = (i, j)-entry of Y A
βpq(Y ) = (Y B)pq = (p, q)-entry of Y B
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for any Y ∈ M(n,R). These are precisely the component functions for AL and
BL: we have

AL =
∑
i,j

αij
∂

∂xij
and BL =

∑
p,q

βpq
∂

∂xpq

Thus we calculate

[AL, BL]
∣∣
I

= AL|IBL −BL|IAL

=
∑
i,j

∑
p,q

Aij
∂βpq

∂xij
(I)

∂

∂xpq
−
∑
p,q

∑
i,j

Bpq
∂αij

∂xpq
(I)

∂

∂xij
(1)

Now we need to determine the partial derivatives of the component functions αij

and βpq. Note that

∂βpq

∂xij
(I) =

d

dt

∣∣∣∣
t=0

βpq(I + tEij)

=
d

dt

∣∣∣∣
t=0

((I + tEij)B)pq

=
d

dt

∣∣∣∣
t=0

(B + tEijB)pq

=

{
d
dt

∣∣
t=0

(Bpq + tBjq) if p = i

0 if p 6= i

=

{
Bjq if p = i

0 if p 6= i

where we have used the fact that (EijB)pq = Bjq because the ith row of EijB is
the jth row of B, and all other entries are zero. Similarly,

∂αij

∂xpq
(I) =

{
Aqj if i = p

0 if i 6= p

Therefore, by plugging these values into the expression (1) and swapping the
indices j and q in the first sum, we have

[AL, BL]
∣∣
I

=
∑
i,j

∑
q

AijBjq
∂

∂xiq

∣∣∣∣
I

−
∑
q

∑
i,j

BiqAqj
∂

∂xij

∣∣∣∣
I

=
∑
i,j

(∑
q

AiqBqj −BiqAqj

)
∂

∂xij

∣∣∣∣
I

=
∑
i,j

(AB −BA)ij
∂

∂xij

∣∣∣∣
I

= [A,B]L
∣∣
I

The result now follows from the fact that any left-invariant vector field is determined
by its value at the identity; we have [AL, BL] = [A,B]L and this gives us an
isomorphism of Lie algebras.

In light of the Lie algebra isomorphism provided to us by Fact 13, we use the
symbol gl(n,R) to denote both the Lie algebra Lie(GL(n,R)) as well as the matrix
group M(n,R).
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Example 4 (Lie algebra of the orthogonal group). Consider the Lie subgroup
O(n) ⊆ GL(n,R) consisting of all n× n orthogonal matrices. Evidently O(n) =
φ−1(I) where φ : GL(n,R)→M(n,R) is the smooth map given by φ(A) = ATA,
so TIO(n) = ker dφI . By Fact 11 we can identify Lie(O(n)) with the Lie subalgebra

Lie(O(n)) ' {X ∈ gl(n,R) : Xe ∈ TIO(n)} ⊆ gl(n,R)

= {X ∈ gl(n,R) : Xe ∈ ker dφI}

For any B ∈ TIGL(n,R) ' M(n,R) we can calculate dφI(B) using Fact 3 by
choosing any smooth curve γ in M(n,R) with γ(0) = I and γ′(0) = B. Evidently
γ(t) = I + tB works. Thus we calculate

(φ ◦ γ)(t) = (I + tB)T (I + tB) = I + t(B +BT ) + t2BTB,

from which we can immediately identify the derivative as the linear term B +BT .
Therefore

dφI(B) = (φ ◦ γ)′(0) = B +BT

for any B ∈ M(n,R), and B ∈ ker dφI if and only if BT = −B; that is, if and
only if B is skew-symmetric. Hence Lie(O(n)) is isomorphic to the Lie subalgebra
o(n) ⊆ gl(n,R) consisting of all n× n skew-symmetric matrices.

Fact 14 (Lie algebra of the complex general linear group). The composition of
natural isomorphisms

Lie(GL(n,C)) ' TI GL(n,C) 'M(n,C)

yields a Lie algebra isomorphism.

Proof. We can use our knowledge about the Lie algebra of the real general linear
group to simplify this proof considerably.

5 The exponential map
We start by recalling some basic definitions and facts about integral curves and
flows of smooth vector fields. Let M be a smooth manifold and X a smooth vector
field on M . For any p ∈ M , an integral curve for X starting at p is a smooth
curve γ : (−ε, ε)→M defined in some open interval around 0 satisfying γ(0) = p
and γ′(t) = Xγ(t) for every t ∈ (−ε, ε).

Note that by existence and uniqueness for ODEs, for any smooth vector field
X and p ∈ M we can always find an integral curve for X starting at p in some
sufficiently small open interval around 0; i.e. integral curves always exist locally.
An integral curve for X starting at p is maximal if it cannot be extended to an
integral curve on any larger open interval in R.

A fundamental theorem in differential geometry says that for any smooth vector
field X on M and for any p ∈ M , there exists a unique maximal integral curve
for X starting at p. We let θ(p) denote this unique maximal integral curve, and
denote its domain by D(p) ⊆ R. Define the flow domain for X as the subset
D ⊆ R×M such that

D(p) = {t ∈ R : (t, p) ∈ D}

for every p ∈M . The flow of X is the smooth map θ : D →M given by

θ(t, p) = θ(p)(t) = θt(p)
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obtained by “flowing along” the maximal integral curve for X starting at p for
some time t. It’s straightforward to check the following properties of the flow:

(a) θ0 = idM .

(b) θt is a diffeomorphism (from an open subset of M to another open subset of
M).

(c) For all s ∈ D(p) and t ∈ D(θ(s,p)) such that s+t ∈ D(p) we have θ(t, θ(s, p)) =
θ(s+ t, p).

Technically speaking the thing we’ve defined here is the maximal flow of X on a
maximal flow domain, and we should distinguish between the many different local
flows that could be defined with different flow domains. The maximal flow will
be sufficient for our purposes though, so we will stick with this slightly simpler
picture.

The situation becomes especially simple if all of the integral curves of X are
defined on all of R (which holds, for example, if M is a compact manifold). In this
case the flow θ : R×M →M of X is just a smooth left R-action on M (called a
global flow), because we have θs ◦ θt = θs+t for every s, t ∈ R and θ0 = idM . In
particular, each map θt : M → M is a diffeomorphism of M . A smooth vector
field X on M is complete if all of its integral curves are defined on all of R; i.e.
if X generates a global flow.

We should make note of one more detail. Say we have an a smooth vector field
X on M , and an integral curve γ : (−ε, ε)→M starting at p ∈M . A priori, the
number ε > 0 depends on p, and an integral curve starting at some other q 6= p
may be defined on a smaller interval. On the other hand, if there exists an ε > 0
such that every integral curve of X is defined on (at least) the interval (−ε, ε),
then X is actually complete. This is the content of the following lemma:

Lemma 1 (Uniform time lemma). Let X be a smooth vector field on a smooth
manifold M , and let θ : D ×M →M denote the flow of X. Suppose there exists
an ε > 0 such that the domain of θ(p) contains (−ε, ε) for every p ∈M . Then X
is complete. In particular, θ is a global flow.

Proof. Suppose for the sake of contradiction that for some p ∈M , the flow domain
D(p) ⊆ R of θ(p) is bounded above, and let b = supD(p) < ∞. By assumption,
θ(p)(t) is defined at least for t ∈ (−ε, ε). Choose any t0 ∈ (b − ε, b) and set
q = θ(p)(t0). Define a curve γ : (−ε, t0 + ε)→M by

γ(t) =

{
θ(p)(t) if − ε < t < b

θ(q)(t− t0) if t0 − ε < t < t0 + ε

noting that θ(q) is defined at each t − t0 ∈ (−ε, ε) by assumption. The two
definitions agree on their overlap: if t0 − ε < t < b then

θ(q)(t− t0) = θt−t0(q)

= θt−t0(θ(p)(t0)

= θt−t0(θt(p))

= θ(p)(t)

Evidently γ is an integral curve for X starting at p, and since t0 + ε > b we have
contradicted the assumption that the maximal flow domain D(p) was bounded
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above by b. A similar argument shows that D(p) cannot be bounded below, so
every integral curve is defined on all of R and X is complete.

Our main use for the uniform time lemma is the following fact: the Lie algebra
of a Lie group consists of complete vector fields. An essential aspect of the proof
of this fact is that for any g ∈ G and X ∈ Lie(G), the left multiplication Lg maps
integral curves of X to integral curves of X. Indeed, since X is left-invariant we
have

d(Lg)g′(Xg′) = Xgg′

for every g, g′ ∈ G, so if α is an integral curve for X then α′(t) = Xα(t) for every t
and therefore

d

dt
(Lg(α(t))) = d(Lg)α(t)(α

′(t))

= d(Lg)α(t)(Xα(t))

= Xgα(t)

so (gα)′(t) = Xgα(t) which means that Lg(α(t)) = gα(t) is an integral curve of X
(defined on the same interval as α). This is basically a reflection of the homogeneity
of the Lie group G; more generally one can use the same arguments to prove that
a left-invariant vector field on a homogeneous space is complete.

Fact 15. Let G be a Lie group. Every left-invariant vector field X ∈ Lie(G) is
complete.

Proof. Let θ : D → G denote the flow of X. There is some ε > 0 such that θ(e)

is defined on (−ε, ε). Let g ∈ G be arbitrary. Since X is left-invariant, Lg maps
integral curves of X to integral curves of X, hence Lg ◦ θ(e) is an integral curve
of X starting at g, still defined on the interval (−ε, ε). Thus Lg ◦ θ(e) = θ(g) by
uniqueness of integral curves. We conclude that for every g ∈ G, the integral curve
θ(g) is defined on (−ε, ε), so X is complete by Lemma 1.

Let G be any Lie group. A one-parameter subgroup for G is a Lie group
homomorphism γ : R → G; i.e. a smooth curve in G which respects the group
operation.

Fact 16. Let G be a Lie group. The one-parameter subgroups for G are precisely
the maximal integral curves of left-invariant vector fields on G starting at the
identity e ∈ G.

Proof. Let X ∈ Lie(G) and let γ denote the maximal integral curve of X starting
at γ(0) = e. Since left-invariant vector fields are complete, γ is defined on all of R.
We just need to show that γ is a group homomorphism. Since X is left-invariant,
each left-multiplication diffeomorphism Lg : G→ G maps integral curves of X to
integral curves of X, and applying this with g = γ(s) for some s ∈ R we see that
t 7→ Lγ(s)(γ(t)) = γ(s)γ(t) is an integral curve of X starting at γ(s). But clearly
t 7→ γ(s+ t) is also an integral curve of X starting at γ(s), so we conclude that
γ(s+ t) = γ(s)γ(t) for every s, t ∈ R by the uniqueness of integral curves. Thus γ
is a one-parameter subgroup for G.
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Conversely, suppose γ : R → G is a one-parameter subgroup for G, and let
γ∗ : Lie(R) → Lie(G) denote the induced Lie algebra homomorphism. Define a
left-invariant vector field on G by

X = γ∗

(
d

dt

)
so that, by definition of γ∗ we have

Xγ(t0) = γ∗

(
d

dt

) ∣∣∣∣
γ(t0)

= dγt0

(
d

dt

∣∣∣∣
t=t0

)
= γ′(t0)

for every t0 ∈ R. Thus γ is an integral curve for X starting at γ(0) = e.

Given X ∈ Lie(G) we call the maximal integral curve of X starting at e ∈ G
the one-parameter subgroup for G generated by X. Since a left-invariant
vector field is determined by its value at e ∈ G, it follows that a one-parameter
subgroup for G is determined by its initial velocity in TeG. We have established a
three-way correspondence:

{one-parameter subgroups for G} ←→ Lie(G)←→ TeG

We can explicitly compute the one-parameter subgroups for GL(n,R): they are
generated by matrix exponentials. For any matrix A ∈M(n,R), we define

eA =
∞∑
k=0

1

k!
Ak = I +A+

1

2
A2 + · · ·

called the exponential of A. A priori, this is merely a formal sum, but in fact
the series converges to an invertible matrix eA ∈ GL(n,R) (where convergence is
taken with respect to the Frobenius norm on M(n,R)). To see why, note that the
Frobenius norm on M(n,R) satisfies |AB| ≤ |A||B|, hence |Ak| ≤ |A|k for every
k ≥ 1. Moreover, we have a convergent series

∞∑
k=0

1

k!
|A|k = e|A| <∞

Therefore by the Weierstrass M -test the series
∑
Ak/k! converges uniformly to a

well-defined matrix eA for any A ∈M(n,R). The matrix exponential eA is clearly
invertible because its eigenvalues are {eλi} where {λi} are the eigenvalues of A
(so, none of them are zero). In fact, we will show below that e−A = (eA)−1.

Fact 17 (One-parameter subgroups of GL(n,R)). For any A ∈ gl(n,R), the
one-parameter subgroup for GL(n,R) generated by A is the function γ(t) = etA.

Proof. Identifying A ∈ gl(n,R) with a matrix A = (Aij) ∈ M(n,R), we get a
corresponding left-invariant vector field AL on GL(n,R) given by

AL(B) = d(LB)I(A) = BA

By Fact 16, the one-parameter subgroup for GL(n,R) generated by A is the
integral curve of AL starting at I. In other words, it is the (unique) solution of
the initial value problem:{

γ′(t) = AL(γ(t)) = γ(t)A

γ(0) = I
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We just need to check two things: that γ(t) = etA is invertible for every t ∈ R
so that it defines a function R → GL(n,R), and that γ satisfies this differential
equation – i.e. that d

dt(e
tA) = etAA for every A ∈M(n,R).

The series etA =
∑∞

k=0(tk/k!)Ak is a (uniformly) convergent series of functions
R→M(n,R), and the series of derivatives is

∞∑
k=0

1

k!

d

dt
(tkAk) =

∞∑
k=0

1

k!
ktk−1Ak

=

∞∑
k=1

1

(k − 1)!
tk−1Ak

=

∞∑
k=0

1

k!
tkAk+1

= A

∞∑
k=0

1

k!
tkAk

which obviously converges absolutely and uniformly to AetA. Thus, term-by-term
differentiation is justified and we conclude that

d

dt
(etA) =

d

dt

( ∞∑
k=0

1

k!
tkAk

)

=
∞∑
k=0

1

k!

d

dt
(tkAk)

= AetA

Note that this calculation also shows that AetA = etAA because in the preceding
calculation we could factor out A on either side of the summation and obtain the
same end result. By smoothness of solutions to ODEs, we also find that γ(t) = etA

is a smooth map R→M(n,R).
Finally, we show that etA is invertible for every t ∈ R, so that γ defines a

smooth curve in GL(n,R). Let σ(t) = γ(t)γ(−t). For any t ∈ R we have

σ′(t) = γ′(t)γ(−t)− γ(t)γ′(−t)
= AetAe−tA − etAAe−tA

= AetAe−tA −AetAe−tA

= 0

since A commutes with etA. Thus σ(t) is constant, and clearly σ(0) = I, so σ(t) = I
for every t ∈ R. We conclude that (etA)−1 = e−tA and therefore γ(t) = etA is the
one-parameter subgroup for GL(n,R) generated by A.

Motivated by the matrix exponential which characterizes the one parameter
subgroups for GL(n,R), we will define an exponential map for any Lie group G so
that the exponentials of left-invariant vector fields on G generate its one-parameter
subgroups. Given a Lie group G with Lie algebra g, the exponential map for G
is the function exp : g→ G defined by

exp(X) = γ(1)
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where γ is the one-parameter subgroup for G generated by X (i.e. the integral
curve of X starting at e ∈ G). It follows immediately from this definition that
for any X ∈ g, the curve γ(s) = exp(sX) is the one-parameter subgroup for G
generated by X. Thus, Fact 17 shows that the exponential map for GL(n,R) is
exactly the matrix exponential exp(A) = eA.

Fact 18. Let G be a Lie group and H ⊆ G a Lie subgroup. The one-parameter
subgroups for H are precisely those one-parameter subgroups for G whose initial
velocities lie in TeH.

Proof. If γ : R → H is a one-parameter subgroup for H then it is obviously a
group homomorphism mapping into G, so it’s a one-parameter subgroup for G
satsifying γ′(0) ∈ TeH. Conversely, let γ : R→ G be a one-parameter subgroup
for G with γ′(0) ∈ TeH.

Fact 19 (Properties of the exponential map). Let G be a Lie group with Lie
algebra g. Then

(i) exp : g→ G is a smooth map.

(ii) For any X ∈ g and s, t ∈ R we have exp((s+ t)X) = exp(sX) exp(tX).

(iii) For any X ∈ g, we have (expX)−1 = exp(−X).

(iv) More generally, for any X ∈ g and n ∈ Z, we have (expX)n = exp(nX).

(v) The differential d(exp)0 : T0g → TeG is the identity map (identifying both
T0g and TeG with g itself).

(vi) exp restricts to a diffeomorphism from some neighborhood of 0 in g to a
neighborhood of e ∈ G.

Proof. (i) Define a map φ : R× (G× g)→ G× g by

φ(t, g,X) = (g · exp(tX), X),

and note that this is the flow of the left-invariant vector field (X, 0) on G× g.
Thus it is smooth as the flow of a smooth vector field. Now we can decompose
exp as

exp = π1 ◦ φ ◦ i = g
i
↪−→ R×G× g

φ−→ G× g
π1−→ G

because

π1(φ(i(X))) = π1(φ(1, e,X)) = π1(exp(X), X) = exp(X)

for every X ∈ g. We conclude that exp is smooth as a composition of smooth
maps.

(ii) Since t 7→ exp(tX) is by definition the one-parameter subgroup for G gen-
erated by X, this map is a group homomorphism R→ G, and property (ii)
follows immediately.

(iii) This property follows immediately from property (ii). One can calculate
directly that e = exp((1− 1)X = exp(X) exp(−X) = exp(−X) exp(X).

(iv) For n = 0 the statement is self-evident, for positive integers n this follows by
induction on (ii), and for negative integers n this follows by induction on (ii)
together with (iii).
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(v) Let X ∈ g and let σ : R→ g be the curve σ(t) = tX. Then σ′(0) = X and
we have

(d exp)0(X) = d(exp)0(σ
′(0))

=
d

dt

∣∣∣∣
t=0

(exp ◦σ)

=
d

dt

∣∣∣∣
t=0

exp(tX)

= Xe

since t 7→ exp(tX) is the integral curve forX in G starting at e ∈ G. Recalling
that we identify Xe with X under the isomorphism TeG ' g, we conclude
that d exp0 = id.

(vi) Since d exp0 = id is invertible by (v), the inverse function theorem says that
exp is a local diffeomorphism at 0 ∈ g, which is another way of saying that
exp restricts to a diffeomorphism on a neighborhood of 0 ∈ g.

6 The closed subgroup theorem
In this section we will use the machinery of exponential maps to prove the closed
subgroup theorem: given any Lie group G, a subgroup H ⊆ G is an embedded
Lie subgroup if and only if it’s a topologically closed subset. One direction can be
proven using some simple point-set topology: if H is an embedded Lie subgroup
then it must be a closed subset. The converse is much more difficult, but by Fact
4 it suffices to show that H is an embedded submanifold whenever H is closed.

For this latter statement: by the local slice criterion (Theorem 1) it suffices to
construct a slice chart around any point in H. We will deploy the following lemma
to construct a slice chart around the identity e ∈ H, and then we will translate
this chart via left multiplication to get a slice chart around any arbitrary point.

Lemma 2. Let G be a Lie group with Lie algebra g = Lie(G) and let H ⊆ G be a
closed subgroup. Define a Lie subalgebra:

h = {X ∈ g : exp(tX) ∈ H for every t ∈ R} ⊆ g

There is an open neighborhood 0 ∈ U ⊆ g so that exp : U → exp(U) is a
diffeomorphism and exp(U ∩ h) = exp(U) ∩H.

Proof. For any open neighborhood 0 ∈ U ⊆ g we automatically have exp(U ∩ h) ⊆
exp(U)∩ h by definition of h, so it suffices to show that U can be chosen such that
the reverse inclusion also holds. For the sake of contradiction, suppose that the
negation holds:

For every open neighborhood 0 ∈ U ⊆ g on which exp is a diffeo-
morphism onto its image, we have exp(U) ∩H 6⊆ exp(U ∩ h); i.e.
there exists an h ∈ exp(U) ∩H such that h 6∈ exp(U ∩ h).

(2)

Choose an inner product 〈·, ·〉 on g and let s be the orthogonal complement of h
in g with respect to this inner product, so that we have a decomposition g = h⊕ s.
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Define φ : h ⊕ s → G by φ(X,Y ) = exp(X) exp(Y ), which is a diffeomorphism
near (0, 0). Choose open neighborhoods 0 ∈ U0 ⊆ g and (0, 0) ∈ W0 ⊆ h ⊕ s so
that exp |U0 and φ|W0 are both diffeomorphisms onto their images. Let {Ui} be a
countable neighborhood basis for g at 0 (for instance, a sequence of coordinate
balls whose radii approach zero), and set

Vi = exp(Ui) ⊆ G
Wi = φ−1(Vi) ⊆ h⊕ s

so that {Vi} is a countable neighborhood basis for h⊕ s at (0, 0), and {Ui} is a
countable neighborhood basis for G at e. By shrinking the sets Ui if necessary, we
can assume without loss of generality that Ui ⊆ U0 and Wi ⊆W0 for every i.

By our assumption (2), for each i we can find an hi ∈ exp(Ui) ∩H such that
hi 6∈ exp(Ui ∩ h). Write hi = exp(zi) ∈ H for some zi ∈ Ui. Since exp(Ui) = Vi =
φ(Wi) we can also write

hi = exp(zi) = φ(Xi, Yi) = exp(Xi) exp(Yi)

for some (Xi, Yi) ∈Wi. Notice that Yi 6= 0, otherwise we would have exp(Xi) =
hi = exp(zi) hence Xi = zi ∈ Ui ∩ h which implies that hi ∈ exp(Ui ∩ h),
contradicting (2).

Let | · | denote the norm on g associated with the chosen inner product. Define
ci = |Yi| and note that ci → 0 since Yi → 0. Then the sequence (c−1i Yi) lies on the
unit sphere in s, and by compactness we can assume without loss of generality
that c−1i Yi converges to some Y ∈ s with |Y | = 1. Let’s verify that exp(tY ) ∈ H
for every t ∈ R – the desired contradiction will follow from this, because then by
definition of h we will have Y ∈ h ∩ s = {0} which is impossible since |Y | = 1.

Fix any t ∈ R and let ni = bt/cic for each i. Then

|ni − ti/ci| ≤ 1 ⇒ |nici − ti| ≤ ci → 0

so nici → t as i→∞. Therefore

niYi = (nici)(c
−1
i Yi)→ tY

which implies that exp(Yi)
ni = exp(niYi) → exp(tY ) as i → ∞. But exp(Yi) =

exp(Xi)
−1hi ∈ H for every i, and H is a closed subgroup, so we conclude that

exp(tY ) ∈ H too. This obtains a contradiction and the proof is complete.

Of course, the subalgebra h we defined in Lemma 2 turns out to be the Lie
algebra of H, but we haven’t yet proven that H is actually a Lie group. This next
lemma will be used to establish the relatively easy direction “an embedded Lie
subgroup is toplogically closed”.

Lemma 3. Let G be a Lie group, and let W ⊆ G be any open neighborhood of the
identity element e ∈ G. There exists a smaller open neighborhood V ⊆W around
e with the property that for any g, h ∈ V we have gh−1 ∈W .

Proof. Define ϕ : G × G → G by ϕ(g, h) = gh−1. Since ϕ is continuous and
W ⊆ G is open, the pre-image ϕ−1(W ) ⊆ G × G is open in the product space.
Write ϕ−1(W ) = W1 ×W2 where W1,W2 ⊆ G are open neighborhoods of the
identity in G (they contain e since ϕ(e, e) = e ∈W implies that (e, e) ∈ ϕ−1(W )).
Choose V = W1∩W2∩W – this is obviously an open neighborhood of e contained
inside W , and since V × V ⊆ W1 ×W2 = ϕ−1(W ) we have ϕ(V × V ) ⊆ W . If
g, h ∈ V then (g, h) ∈ V × V implies that gh−1 = ϕ(g, h) ∈W .
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Theorem 2 (Closed subgroup theorem). Let G be a Lie group and H ⊆ G any
subgroup. Then H is an embedded Lie subgroup of G if and only if H is closed.

Proof. First suppose that H is an embedded Lie subgroup of G. We want to show
that H is a closed subset. Let (hi) be any sequence in H converging to some g ∈ H.
We want to show that g ∈ H. Since H is embedded, by the local slice criterion
(Theorem 1) we can choose a slice chart U ⊆ G for H around e ∈ H, and then
choose a smaller open neighborhood W around e such that W ⊆ U . By Lemma
3 we can find an open neighborhood V ⊆ W around e such that g1g−12 ∈ W
whenever g1, g2 ∈ V .

Now hi → g implies that hig−1 → e by continuity of the multiplication in G, so
the sequence (hig

−1 eventually lies in V , and we assume without loss of generality
that (hig

−1) ⊆ V . Therefore

hih
−1
j = hig

−1gh−1j = hig
−1(hjg

−1)−1 ∈W ∩H

for every i and j. Fixing j and letting i→∞, we find that

hih
−1
j → gh−1j ∈W ∩H ⊆ U ∩H.

Since U is a slice chart for H in G, the slice U ∩H is diffeomorphic to an affine
subspace of (an open subset of) Euclidean space, hence U ∩H is closed in U , and
therefore U ∩H = U ∩H. As a result, we have gh−1j ∈ H implying g ∈ H, thus
H = H and H is closed.

Conversely, suppose that H is a closed subgroup of G. By Fact 4 (embedded
subgroups are Lie subgroups), it suffices to show that H is an embedded subman-
ifold, hence by the local slice criterion it suffices to construct a slice chart for
H around any point in H. First we construct a slice chart around the identity
e ∈ H. Let h ⊆ g be the Lie subalgebra defined in Lemma 2, and let U be the
open neighborhood of 0 in g given by the lemma. Choose any linear isomorphism
E : g→ Rn mapping h ⊆ g to Rk ⊆ Rn. Then ϕ = E ◦ exp−1 : exp(U)→ Rn is a
smooth chart for G around e, and

ϕ(exp(U) ∩H) = E(exp−1(exp(U) ∩H))

= E(U ∩ h)

where the latter set is diffeomorphic to an open subset of the affine space in Rn
consisting of those points whose last n− k coordinates are zero (by definition of
the map E). Thus (ϕ, exp(U) ∩H) is a slice chart for H around e.

Now for any arbitrary point h ∈ H, the left translation diffeomorphism Lh :
H → H maps exp(U)∩H onto Lh(expU)∩H. Thus (ϕ ◦L−1h , Lh(expU)∩H) is
a slice chart for H around h.

Theorem 2 was first published by Élie Cartan (the father) in 1930, hence the
theorem is often called Cartan’s theorem or Cartan’s closed subgroup theorem.

Corollary 1. Let G be a Lie group. For any subgroup H ⊆ G, the closure H is
an embedded Lie subgroup of G.

As an immediate consequence, we deduce that all Lie subgroups are either
embedded, or they are dense subgroups of embedded Lie subgroups. The proto-
typical example: the image of an irrational line on the torus under the embedding
T2 ↪→ T3. It’s a Lie subgroup of T3 which is not closed, embedded, or dense, but
it’s obviously dense in its closure, which is an embedded Lie subgroup of T3.
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Summary. Here is a summary of the logic and ultimate results of this section:

1. The relatively easy direction “embedded Lie subgroup is topologically closed”
was proved using some point-set topology; namely Theorem 1 and Lemma 3.

2. The nontrivial direction “closed subgroup is an embedded Lie subgroup”
utilized our results about Lie algebras and exponential maps. Since embedded
subgroups are Lie subgroups (Fact 4), we only needed to show that a closed
subgroup is an embedded submanifold. We did this using Theorem 1 and
Lemma 2.

3. As a result, we have characterized the embedded Lie subgroups: they are
exactly the closed subgroups. We have also characterized the Lie subgroups:
they are dense subsets of embedded Lie subgroups.

7 References
In this note we mostly followed John Lee’s Intro to Smooth Manifolds (pp. 181-199
and pp. 515-525), filling in details to several exercises and problems along the way.
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