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Abstract

We present all of the necessary tools and techniques from the theory of smooth
manifolds and Lie groups to state the quotient manifold theorem: given a smooth,
proper, free Lie group action on a smooth manifold, the orbit space is a smooth
manifold. Then we explore some important applications of the theorem, such as
the construction and characterization of homogeneous spaces.
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1 Preliminaries
Recall that a smooth map F : M → N is a submersion at x ∈ M if the
differential dFx : TxM → TF (x)N is surjective. If F is a submersion at every
point on M , we simply call it a smooth submersion. We have the following local
characterization for submersions:

Theorem 1 (Local submersion theorem). Let M and N be smooth manifolds of
dimension m and n respectively. Suppose F : M → N is a smooth submersion
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at x ∈ M , and let y = F (x). Then there exist smooth charts ϕ around x and ψ
around y such that the local coordinate representation F̂ = ψ ◦ F ◦ ϕ−1 is

F̂ (x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn).

In other words, F is locally equivalent to the projection Rm → Rn near x.

Suppose M is a smooth manifold. An embedded submanifold of M is a
subset S ⊆M that is a topological manifold with respect to the subspace topology,
and equipped with a smooth structured such that the inclusion S ↪→ M is a
smooth embedding. Note that embedded submanifolds S ⊆M are precisely the
images S = F (N) of smooth embeddings F : N →M .

An immersed submanifold of M is a subset S ⊆ M that is a topological
manifold (not necessarily with them subspace topology), equipped with a smooth
structure such that the inclusion S ↪→M is a smooth immersion. Analogous to
the embedded case, we note that immersed submanifolds S ⊆M are precisely the
images S = F (N) of injective smooth immersions F : N →M .

Recall that the rank of a smooth map F : M → N at p ∈M is the dimension
of the image of dFp inside TF (p)N .

Theorem 2 (Constant-rank level set theorem). Let M and N be smooth manifolds,
and let F : M → N be a smooth map of constant rank r. Then each level set
F−1(y) is an embedded submanifold of codimension r in M .

Theorem 3 (Global rank theorem). Let M and N be smooth manifolds, and let
F : M → N be a smooth map of constant rank. Then:

(i) If F is surjective, then it is a smooth submersion.
(ii) If F is injective, then it is a smooth immersion.
(iii) If F is bijective, then it is a diffeomorphism.

Let U ⊆ Rn be open. A k-slice of U is a subset of the form

S = {(x1, . . . , xk, ck+1, . . . , cn) ∈ U} ⊆ U

for some constants ck+1, . . . , cn ∈ R. Thus, a k-slice is an affine subset of U
homeomorphic to an open subset of Rk. Now take a smooth n-manifold M and
let ϕ : U ⊆ M → Rn be a smooth chart on M . A k-slice of U ⊆ M is a subset
S ⊆ U such that ϕ(S) is a k-slice of ϕ(U) ⊆ Rn.

We say that a subset N ⊆M satisfies the local k-slice condition if: for every
p ∈ N there exists a smooth chart ϕ : U ⊆ M → Rn for M around p such that
N ∩ U is a k-slice of U ; i.e. ϕ(N ∩ U) is a k-slice of ϕ(U). Such a chart (U,ϕ) is
called a slice chart for N in M . Roughly speaking, the local k-slice condition
says that, near any point, N is locally homeomorphic to a k-dimensional affine
open subset of Rn.
Theorem 4 (Local slice criterion). Let M be a smooth manifold. A subset N ⊆M
is an embedded k-dimensional submanifold of M if and only if N satisfies the local
k-slice condition.

Recall that the differential of a smooth map can be calculated using smooth
curves:

Fact 1. Let F : M → N be a smooth map and let p ∈M . For any v ∈ TpM we
have

dFp(v) = (F ◦ γ)′(0)

for any smooth curve γ : I →M satisfying γ(0) = p and γ′(0) = v.
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2 Lie groups
A Lie group is a set G which is both a smooth manifold and a group, such that
the multiplication and inversion maps

m : G×G→ G, m(g, h) = gh

j : G→ G, j(g) = g−1

are both smooth. In this case j is a diffeomorphism because it is its own inverse.
In general we will denote the identity element of a group by e ∈ G, but often times
there is a more common notation available like 0 for an abelian group, In for the
n× n identity matrix of a matrix group, or 1 for the multiplicative group of real
or complex numbers.

Fact 2 (Differential of multiplication and inversion). Let G be a Lie group. Then
the differentials dm(e,e) : TeG× TeG→ TeG and dje : TeG→ TeG of the multipli-
cation and inversion maps are given by

dm(e,e)(X,Y ) = X + Y

dje(X) = −X

for every X,Y ∈ TeG.

Proof. Let i1 : G ' G× {e} ↪→ G×G and i2 : G ' {e} × {G} ↪→ G×G denote
the natural inclusions. Under the identification T(e,e)(G×G) ' TeG× Te(G) we
have for any f ∈ C∞(G)

dm(e,e)(X, 0)f = (X, 0) · (f ◦m)

= X · (f ◦m ◦ i1) + 0 · (f ◦m ◦ i2)
= X(f)

because m ◦ i1 = m ◦ i2 = idG. The same calculation shows that dm(e,e)(0, Y )f =
Y f and therefore

dm(e,e)(X,Y )f = [dm(e,e)(X, 0) + dm(e,e)(0, Y )]f = Xf + Y f

which shows that dm(e,e)(X,Y ) = X + Y . A similar argument works for the
inversion map.

A crucial fact about Lie groups is that any point can be mapped to any other
via a diffeomorphism (i.e. Lie groups are homogeneous spaces). Indeed, take a Lie
group G and for any g ∈ G define the maps

Lg : G→ G, Lg(h) = gh

Rg : G→ G, Rg(h) = hg

called left translation and right translation by g, respectively. Note that
Lg is smooth because it can be expressed as a composition of an inclusion with
multiplication,

Lg = m ◦ i : G ' {g} ×G i
↪−→ G×G m−→ G

Moreover, Lg is a diffeomorphism because its inverse is L−1g = Lg−1 which is
also smooth. A similar argument shows that the right translation map Rg is a
diffeomorphism. For emphasis we summarize the preceding observations in the
following fact.
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Fact 3. Let G be a Lie group. For any g ∈ G the left and right translation maps
Lg and Rg are diffeomorphisms.

Example 1 (Lie groups).

(a) The Euclidean space Rn is a Lie group with respect to vector addition because
the coordinates of x − y are smooth functions of the coordinates of (x, y).
For the same reason, Cn is a Lie group with respect to addition.

(b) The general linear group GL(n,R) is a Lie group with respect to matrix
multiplication because the entries of AB are polynomials in the entries of A
and B. Inversion is smooth by Cramer’s rule. In particular when n = 1 this
means that the set of nonzero real numbers R× is a Lie group with respect
to multiplication.

(c) The complex general linear group GL(n,C) is an open submanifold of
M(n,C), hence it’s a smooth manifold of (real) dimension 2n2. Matrix
multiplication and inversion are smooth functions of the real and imaginary
parts of the matrix entries. In particular when n = 1 this means that the set
of nonzero complex numbers C× is a Lie group with respect to multiplication.

(d) Let V be any vector space over R or C. The group GL(V ) of invertible linear
maps V → V is also a Lie group.

(e) Let G be a Lie group and H ⊆ G an open subgroup. Then H inherits both
the group structure and smooth manifold structure from G, so H is a Lie
group.

(f) The group of n× n invertible matrices over R with positive determinant is
an open subgroup of GL(n,R) as the pre-image of the open set (0,∞) ⊂ R
under the (continuous) determinant map, hence it’s an n2-dimensional Lie
group.

(g) S1 ⊆ C× is a 1-dimensional smooth manifold and a group with respect to
complex multiplication. In local coordinates, multiplication and inversion in
this group look like

(θ1, θ2) 7→ θ1 + θ2 and θ 7→ −θ

so they are smooth operations. Thus S1 is a Lie group (called the circle
group).

(h) The direct product of any finite collection of Lie groups is a Lie group with
respect to component-wise operations. For example, the n-dimensional torus
Tn = S1 × · · ·S1 is a Lie group.

(i) Any group with the discrete topology is a discrete topological group. If the
group is finite or countable, then it’s also a 0-dimensional smooth manifold,
hence it’s a discrete Lie group.

Let G and H be Lie groups. A Lie group homomorphism is a smooth map
F : G → H that is also a group homomorphism. If F is bijective and F−1 is
also a Lie group homomorphism (i.e. a smooth map, since it’s automatically a
homomorphism) then F is both a diffeomorphism of smooth manifolds and an
isomorphism of groups; in this case we call it a Lie group isomorphism.

Example 2 (Lie group homomorphisms).
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(a) If G is a Lie group and H ⊆ G is any Lie subgroup, the inclusion i : H ↪→ G
is a Lie group homomorphism. For instance, the inclusion i : S1 ↪→ C× is a
Lie group homomorphism.

(b) The exponential function R→ R×, t 7→ et is an injective Lie group homomor-
phism because e(s+t) = eset for any s, t ∈ R. The image of the exponential
function is the open subgroup R+ ⊆ R× consisting of positive real numbers.
Hence, mapping onto its image, it provides a Lie group isomorphism R ' R+

with inverse the natural logarithm function R+ → R, t 7→ ln t.

(c) The complex exponential function C→ C× given by z 7→ ez is a Lie group
homomorphism which is surjective but not injective.

(d) The smooth map ε : R→ S1 given by ε(t) = e2πit is a Lie group homomor-
phism with kernel ker ε = Z. Similarly, εn : Rn → Tn given by

εn(x1, . . . , xn) = (e2πix1 , . . . , e2πixn)

is a Lie group homomorphism with kernel ker εn = Zn. Thus, as we will show
later, this induces a Lie group isomorphism Rn/Zn ' Tn (by analogy with
the first isomorphism theorem for groups).

(e) The determinant function det : GL(n,R) → R× is a surjective Lie group
homomorphism with kernel ker det = SL(n,R).

(f) Let G be any Lie group. For any g ∈ G, the “conjugation by g” map
Cg : G→ G given by x 7→ gxg−1 is a Lie group isomorphism of G onto itself.

Fact 4. Every Lie group homomorphism has constant rank.

Proof. Let F : G→ H be a Lie group homomorphism and let e ∈ G and ẽ ∈ H
denote the identity elements. Fixing an arbitrary g0 ∈ G, we will show that the
rank of F at g0 is the same as the rank of F at e. First notice that for any g ∈ G
we have

F (Lg0(g)) = F (g0g) = F (g0)F (g) = LF (g0)(F (g))

so F ◦ Lg0 = LF (g0) ◦ F . Now take the derivative of both sides at the identity
e ∈ G to see that

dFg0 ◦ d(Lg0)e = d(F ◦ Lg0)e = d(LF (g0) ◦ F )e = d(LF (g0))ẽ ◦ dFe

and d(Lg0)e is an isomorphism because Lg0 is a diffeomorphism, so

dFg0 = d(LF (g0))ẽ ◦ dFe ◦ d(Lg0)−1e

so dFg0 and dFe have the same rank.

Now combining Fact 4 with the global rank theorem, we know that a constant
rank smooth map is bijective if and only if it’s a diffeomorphism, so a Lie group
homomorphism is bijective if and only if it’s a diffeomorphism. Therefore a Lie
group homomorphism is bijective if and only if it’s a Lie group isomorphism.

Corollary 1. A Lie group homomorphism is a Lie group isomorphism if and only
if it’s bijective.
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3 Lie subgroups
Let G be a Lie group. A Lie subgroup of G is a subgroup H ⊆ G endowed
with a topology and a smooth structure making it into both a Lie group and an
immersed submanifold of G. In this section we will describe some basic examples
of Lie subgroups.

Fact 5 (Embedded subgroups are Lie subgroups). Let G be a Lie group and
H ⊆ G a subgroup that is also an embedded submanifold. Then H is a Lie subgroup
of G.

Proof. Since an embedded submanifold is trivially an immersed submanifold, we
already know that H is a subgroup of G and an immersed submanifold of G. We
just need to check that H is a Lie group in its own right, i.e. that the multiplication
and inversion operations in H are smooth. The inclusion i : H × H ↪→ G × G
is a smooth embedding because H is an embedded submanifold of G. Thus the
multiplication in H is obtained by restricting the multiplication m : G×G→ G
in G to H,

m ◦ i : H ×H i
↪−→ G×G m−→ H

where we have landed in H because H is a subgroup. Thus the multiplication in
H is smooth as a composition of smooth maps. Similarly, the inversion map in
H is smooth as a composition of the (smooth) inversion in G with the smooth
embedding H ↪→ G.

The simplest example of embedded Lie subgroups are the open subgroups.
However, as the following fact demonstrates, the collection of open subgroups of a
Lie group is very limited.

Fact 6. Let G be a Lie group. Any open subgroup H ⊆ G is also closed, hence a
union of connected components of G.

Proof. Every left coset gH is an open subset of G as the image of the open set H
under the diffeomorphism Lg. Hence the complement is open as the union of open
cosets, G \H =

⋃
g 6∈H gH, which means that H is closed. Since H is both open

and closed it must be a union of connected components of G.

For any subset W ⊆ G, let 〈W 〉 denote the subgroup generated by W . Recall
that this subgroup can be understood as the intersection of all subgroups of G
containing W , or equivalently as the set

〈W 〉 = {w1w2 · · ·wm : m ≥ 0 and wi ∈W ∪W−1}

consisting of all words in G obtained by concatenating elements of W and their
inverses.

Fact 7 (Neighborhoods of the identity in a Lie group). Let G be a Lie group and
let W ⊆ G be any open neighborhood of e ∈ G. Then
(i) W generates an open subgroup 〈W 〉 of G.
(ii) If W is connected then it generates a connected open subgroup of G.

(iii) If G is connected then W generates all of G.
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Proof. For any subsets A,B ⊆ G we adopt the notation

AB = {ab : a ∈ A, b ∈ B}
A−1 = {a−1 : a ∈ A}

(i) For any k ≥ 1, let Wk denote the set of all elements in G that can be
expressed as a product of k or fewer elements of W ∪ W−1. Note that
W−1 = j(W ) is open as the image of an open set under the diffeomorphism
j, hence W1 = W ∪W−1 is open. For each k > 1 we then have

Wk = W1Wk−1 =
⋃
g∈W1

Lg(Wk−1)

and since Lg is a diffeomorphism it follows by induction that each Wk is
open as a union of open sets. Therefore 〈W 〉 =

⋃
k≥1Wk is open.

(ii) Suppose W ⊆ G is connected. Then W−1 = j(W ) is connected as the image
of a connected set under the diffeomorphism j, and so W1 = W ∪W−1 is
connected as a union of connected sets having nonempty intersection (they
the identity in common). Then W2 = m(W1 × W1) is connected as the
image of a connected set under the continuous map m, and it follows by
induction that Wk = m(W1 ×Wk−1) is connected for each k ≥ 1. Therefore
〈W 〉 =

⋃
k≥1Wk is connected as a union of connected sets having the identity

in common.

(iii) Suppose G is connected. By (ii), we know that 〈W 〉 is an open subgroup of
G, and by Fact 6 it’s also a closed subgroup. But G is connected so we must
have 〈W 〉 = G.

Let G be a Lie group. The connected component of G containing the identity
e ∈ G is an open neighborhood of the identity called the identity component
of G, and we denote it by G0 ⊆ G. The following fact shows that, in some sense,
this is the only connected component of G that we need to study.

Fact 8 (Identity component of a Lie group). Let G be a Lie group with identity
component G0 ⊆ G. Then
(i) G0 is a normal subgroup of G.

(ii) G0 is the only connected open subgroup of G.

(iii) Every connected component of G is diffeomorphic to G.

Proof. (i) By Fact 7 the identity component G0 generates a connected open sub-
group of G, so 〈G0〉 is connected and is also a union of connected components
of G. Hence 〈G0〉 must itself be a connected component of G, and the only
possibility is that 〈G0〉 = G0 since it contains the identity. This shows that
G0 is a connected open subgroup of G. Let g ∈ G. Then the conjugation
map Cg : G→ G given by x 7→ gxg−1 is a diffeomorphism mapping G0 into
a connected subset of G containing the identity (since Cg(e) = e). Thus
Cg(G0) ⊆ G0 which means that G0 is normal.

(ii) Any connected open subgroup of G is a connected open neighborhood of
e ∈ G, and by Fact 7 it generates a connected open subgroup of G. The
same argument as before shows that it must be G0.
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(iii) Let H ⊆ G be any connected component of G. For any h ∈ H, Lh(G0) = hG0

is a connected subset of H which is diffeomorphic to G0. In fact since G0 is
both open and closed, hG0 must also be both open and closed, which implies
that hG0 = H and so H is diffeomorphic to G0.

Fact 6 shows that open subgroups are all unions of connected components, and
by Fact 8 the identity component tells us everything about the other components.
So we essentially know what all of the open subgroups look like. Next we will
discuss some useful ways of producing many more embedded Lie subgroups (not
just open ones).

Fact 9. Let F : G→ H be a Lie group homomorphism. Then kerF is an embedded
Lie subgroup of G with dim kerF = dimG− rankF ; i.e. codim kerF = rankF .

Proof. Since F has constant rank by Fact 4 it follows from the constant-rank level
set theorem that kerF = F−1(e) is an embedded submanifold with codim kerF =
rankF . The kernel of F is a subgroup of G for algebraic reasons, hence by Fact 5
the kernel is also a Lie subgroup.

Fact 10. Let F : G → H be an injective Lie group homomorphism. Then the
image F (G) has a unique smooth manifold structure such that F (G) is a Lie
subgroup of H and F : G→ F (G) is a Lie group isomorphism.

Proof. Since F is injective and constant rank, it must be a smooth immersion by
the global rank theorem. Thus F (G) has a unique smooth structure making it
into an immersed submanifold of H such that F : G→ F (G) is a diffeomorphism
(and also an isomorphism of groups). Moreover, F (G) is a subgroup of H for
algebraic reasons, so all that remains is to show that F (G) is a Lie group in its
own right; i.e. that it has smooth multiplication and inversion operations. Let
m̂ : F (G)× F (G)→ F (G) denote multiplication in F (G). Then for any g, h ∈ G
we have

m̂(F (g), F (h)) = F (g)F (h) = F (gh) = F (m(g, h))

so m̂ ◦ (F × F ) = F ◦m. But F is a diffeomorphism onto its image so

m̂ = (F ◦m) ◦ (F × F )−1

hence m̂ is smooth as a composition of smooth maps. A similar argument shows
that the inversion map î : F (G)→ F (G) is smooth.

We pause here to observe an interesting aspect of the preceding fact. Even
though a subset of a Lie group which is both a subgroup and immersed submanifold
need not be a Lie group itself (i.e. the restricted operations need not be smooth),
we were able to use the group homomorphism F to express the multiplication m̂ in
F (G) as a composition of smooth maps without needing the inclusion F (G) ↪→ H
to be smooth embedding.

Example 3 (Embedded Lie subgroups).

(a) The subgroup GL+(n,R) ⊆ GL(n,R) is an open subgroup of GL(n,R), hence
an embedded Lie subgroup.
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(b) S1 is a subgroup of C×, and also an embedded submanifold, so it’s an
embedded Lie subgroup by Fact 5.

(c) The real special linear group SL(n,R) is an embedded Lie subgroup of
GL(n,R) by Fact 9 because it’s the kernel of the Lie group homomorphism
det : GL(n,R) → R×. Moreover, the determinant function is surjective,
so it’s a smooth submersion by the global rank theorem, and therefore
dim SL(n,R) = dim GL(n,R)− dimR× = n2 − 1.

(d) Define a map β : GL(n,C)→ GL(2n,R) by replacing each complex entry a+

ib with the 2×2 block
[
a −b
b a

]
. This is an injective Lie group homomorphism,

whose image is an embedded Lie subgroup of GL(2n,R). Thus, GL(n,C) is
isomorphic to this Lie subgroup of GL(2n,R).

(e) The complex special linear group SL(n,C) ⊆ GL(n,C) is the kernel of the
Lie group homomorphism det : GL(n,C) → C×. Since the determinant
homomorphism is surjective, it’s a smooth submersion by the global rank
theorem, and therefore dim SL(n,C) = dim GL(n,C)− dimC× = 2n2 − 2.

Example 4 (Lie subgroup that is not embedded). Let α be an irrational number
and let γ : R→ T2 ⊆ C2 be the curve on the 2-torus defined by γ(t) = (e2πit, e2πiαt).
Then γ is an injective Lie group homomorphism (hence an injective smooth
immersion), so its image γ(R) ⊆ T2 is a 1-dimensional immersed submanifold of
T2; however, γ(R) is not an embedded submanifold of T2. The image γ(R) is
dense in T2, so if we try to use the subspace topology naively to select an open
disk (in T2) around some point in γ(R), then it will contain infinitely many path
components: certainly not homeomorphic to R4!

Of course, γ(R) is equipped with its own topology (not the subspace topology)
making it into a 1-dimensional topological manifold (by taking open intervals along
the curve, for example). In summary, γ(R) is a Lie subgroup of T2 but not an
embedded Lie subgroup.

In general, a smooth submanifold can be closed but not embedded, or embedded
but not closed; for example, the figure eight curve in R2 is closed but not embedded,
and the open unit ball in Rn is embedded but not closed. For Lie groups, on the
other hand, there is a close relationship between being closed and being embedded
– in fact, a subgroup H ⊆ G is an embedded Lie subgroup if and only if it’s
topologically closed! We will forego the proof (because a proper proof involves the
machinery of Lie algebras and exponential maps) but it’s such a crucial theorem
that we will state it here:

Theorem 5 (Closed subgroup theorem). Let G be a Lie group and let H ⊆ G be
a subgroup. The following are equivalent:

(i) H is an embedded Lie subgroup of G.

(ii) H is an embedded submanifold of G.

(iii) H is closed in G.

Corollary 2. Let G be a Lie group. For any subgroup H ⊆ G, the closure H is
an embedded Lie subgroup of G.

As an immediate consequence, we deduce that all Lie subgroups are either
embedded, or they are dense subgroups of embedded Lie subgroups. The prototyp-
ical example: the image of the irrational line on the torus under the embedding
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T2 ↪→ T3. It’s a Lie subgroup of T3 which is not closed, embedded, or dense, but
it’s obviously dense in its closure, which is an embedded Lie subgroup of T3.

4 Lie group actions
Let G be a group and M any set. A left action of G on M , or a left G-action
on M , is a map θ : G×M →M , written as θ(g, x) = g · x, satisfying

g1 · (g2 · x) = (g1g2) · x,
e · x = x,

for every g1, g2 ∈ G and x ∈M . A right action of G on M is defined analogously.
If G is a topological group and M is a topological space, a (left or right) action

of G on M is called a continuous action if the defining map G ×M → M
or M × G → G is continuous; similarly, if G is a Lie group acting on a smooth
manifold M then the action of G on M is called a smooth action if the defining
map is smooth. In this note we will be primarily concerned with Lie groups acting
smoothly on smooth manifolds, and unless otherwise stated we will assume that
the group acts on the left.

Here’s another useful way of thinking about group actions. To say that a
topological group G acts continuously on a topological manifold M is equivalent
to saying that for any fixed g ∈ G we have a homeomorphism θg : M →M defined
by θg(x) = g · x; indeed, just observe directly from the definition that θg−1 is
the inverse of θg, and this inverse is also continuous. Therefore, a continuous
group action θ : G×M →M is the same as a family of homeomorphisms of M
{θg}g∈G indexed by G. In the same way, if G is a Lie group and M is a smooth
manifold then a smooth group action θ : G×M →M is the same as a family of
diffeomorphisms of M indexed by G.

Let θ : G ×M → M be a G-action on M . We adopt the following standard
terminology:

• For any p ∈M , the orbit of p is the set

G · p = {g · p : g ∈ G} ⊆M

consisting of the points in M that can be reached by permuting p.

• For any p ∈M , the stabilizer of p is the set

Gp − {g ∈ G : g · p = p} ⊆ G

consisting of the group elements which fix p. It follows from the definition of
a group action that the stabilizer Gp is always a subgroup of G.

• The G-action is transitive if, for every p, q ∈M , there exists a g ∈ G such
that g · p = q. In other words, G · p = M for every p ∈M , so M is the only
orbit.

• The G-action is free if Gp = {e} for every p ∈M ; i.e. the only element of G
that fixes anything in M is the identity.

Example 5 (Lie group actions on smooth manifolds).
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(a) Let G be any Lie group and M any smooth manifold. The trivial action of
G on M given by g · p = p for every g ∈ G and p ∈M is a smooth action for
which every orbit is a single point – i.e. G · p = p – and each stabilizer is all
of G – i.e. Gp = G.

(b) The general linear group GL(n,R) acts naturally on Rn via matrix multipli-
cation (A, x) 7→ Ax. This is a smooth action because the components of Ax
are polynomials in the entries of A and x. There are exactly two orbits, {0}
and Rn \ {0}, because any nonzero vector can be taken to any other by some
invertible linear transformation (just perform some combination of rotations
and scaling).

(c) Every Lie group G acts smoothly on itself by left translation, (g, h) 7→ gh.
Evidently this action is both free and transitive.

(d) Every Lie group G acts smoothly on itself by conjugation, (g, h) 7→ ghg−1.
The stabilizer of h ∈ G is exactly the centralizer of h, i.e. the set of elements
which commute with h. The orbits of this action are precisely the conjugacy
classes of G.

(e) Zn acts on Rn smoothly and freely by translation.

The machinery of group actions establishes a nice condition that in many cases
allows us to easily prove that a smooth map has constant rank. Suppose we have
a group G acting on two sets M and N . We say that F : M → N is equivariant
with respect to the G-actions if

F (g · p) = g · F (p) (for G acting on the left)
F (p · g) = F (p) · g (for G acting on the right)

holds for every g ∈ G and p ∈ M . Equivalently, in terms of the families of
bijections θg : M →M and ϕg : N → N , this condition means that

ϕg ◦ F = F ◦ θg

for every g ∈ G.

M N

M N

F

θ ϕ

F

Theorem 6 (Equivariant rank theorem). Let G be a Lie group acting smoothly on
two smooth manifolds M and N , and let F : M → N be a smooth map. Suppose
that

• G acts transitively on M .

• F is equivariant with respect to the G-actions.

Then F has constant rank.

Proof. This proof follows the same pattern as Fact 4. Let θ : G×M →M denote
the transitive G-action on M and let ϕ : G×N → N denote the G-action on N .
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Fix two points p, q ∈M . Since G acts transitively on M we can find some g ∈ G
such that θg(p) = q, and since F is equivariant we have

ϕg ◦ F = F ◦ θg

so taking the differential at p on both sides yields

d(ϕg)F (p) ◦ dFp = dFq ◦ d(θg)p.

But θg and ϕg are diffeomorphisms, so their differentials are isomorphisms, and
therefore

dFq = d(ϕg)F (p) ◦ dFp ◦ d(θg)
−1
p

which means that F has the same rank at p and q, and F has constant rank.

We motivate the first application of the equivariant rank theorem by appealing
to some basic results from combinatorial group theory. Suppose we have a group
G acting on a set M . For each p ∈ M , define the orbit map θ(p) : G → M by
θ(p)(g) = g · p (kind of like “evaluation at p”). Notice that the image of θ(p) is

θ(p)(G) = G · p = orbit of p under G,

and the fiber of p under θ(p) is(
θ(p)
)−1

(p) = Gp = stabilizer of p in G.

Observe that, for any p ∈M , we can partition G into cosets of Gp (each of size
|Gp|) to get a bijection G/Gp ←→ G · p, and this yields a formula

|G| = |G · p||Gp|

which is the so-called orbit-stabilizer theorem. Thus, even in the context of sets,
the orbit map already provides useful combinatorial information about the group
G and the set M . It should come as no surprise, then, that the orbit map provides
even more useful information in the context of smooth manifolds.

Fact 11 (Properties of the orbit map). Let M be a smooth manifold and let θ be
a smooth G-action on M . Then for each p ∈M :

(i) The orbit map θ(p) is smooth and constant rank, so the stabilizer Gp is an
embedded Lie subgroup of G.

(ii) If Gp = {e}, then θ(p) is an injective smooth immersion, and so the orbit
G · p is an immersed submanifold of M .

Proof. (i) First note that θ(p) is smooth as a composition of smooth maps:

θ(p) = θ ◦ i : G ' G× {p} i
↪−→ G×M θ−→M.

In order to show θ(p) has constant rank it suffices to show that it’s equivariant
with respect to some suitable G-actions. Indeed, G acts transitively on itself
by left multiplication, and for any g, g′ ∈ G we have

θ(p)(g′ · g) = θ(p)(g′g)

= (g′g) · p
= g′ · (g · p)

= g′ ·
(
θ(p)(g)

)
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and so θ(p) has constant rank by the equivariant rank theorem. Finally, we
know that fibers of constant rank smooth maps are embedded submanifolds,
so the stabilizer Gp =

(
θ(p)
)−1

(p) ⊆ G is an embedded submanifold of G,
and it’s a subgroup for algebraic reasons. Hence Gp is a Lie subgroup by
Fact 5.

(ii) Suppose Gp = {e}. If θ(p)(g) = θ(p)(g′) then g′ · p = g · p implies that
(g−1g′) · p = e so g−1g′ ∈ Gp and therefore g−1g′ = e. Hence g′ = g and θ(p)

is injective. Since θ(p) also has constant rank, it follows from the global rank
theorem that θ(p) is a smooth immersion, so the orbit G · p is an immersed
submanifold of M as the image of a smooth immersion.

The matrix groups provide a good demonstration of how the equivariant rank
theorem can be used in practice.

Example 6 (The orthogonal group). Recall that a matrix A ∈ M(n,R) is or-
thogonal if its columns constitute an orthonormal basis for Rn, or equivalently
if ATA = In. Let O(n) denote the group of n × n orthogonal matrices. In this
example we will establish the following important basic facts about O(n):

• O(n) is an embedded Lie subgroup of GL(n,R).

• The dimension of O(n) as a submanifold of GL(n,R) is n(n− 1)/2.

• O(n) is compact.

Define φ : GL(n,R) → M(n,R) by φ(A) = ATA. Then O(n) = φ−1(In), so in
order to show that O(n) is an embedded Lie subgroup it will suffice to show
that φ has constant rank. Define a right action of GL(n,R) on itself by right
multiplication:

B ·A = BA for every A,B ∈ GL(n,R).

Moreover, GL(n,R) acts on M(n,R) on the right by:

X ·A = ATXA for every A ∈ GL(n,R) and X ∈M(n,R).

These are smooth actions and φ is equivariant with respect to them because

φ(B ·A) = φ(BA)

= (BA)TBA

= ATBTBA

= (BTB) ·A
= φ(B) ·A

so φ has constant rank by the equivariant rank theorem, and therefore O(n) is
an embedded Lie subgroup of GL(n,R) (by combining the constant-rank level set
theorem with Fact 5).

Note that O(n) is a closed subset of M(n,R) as the pre-image of the closed
set {In} under the continuous map φ. Furthermore, every orthogonal matrix has
norm equal to

√
n because the columns of an orthogonal matrix are unit vectors.

Hence O(n) is a closed and bounded subset of M(n,R) ' Rn2 , which means it’s
compact.
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Now what is the dimension of O(n) as a submanifold of GL(n,R)? Note that

dimO(n) = dimφ−1(In) = n2 − rankφ = n2 − dim im dφIn

by the constant-rank level set theorem, so we just need to analyze the differential
dφIn . For any B ∈ TInGL(n,R) 'M(n,R) we can calculate dφIn(B) using Fact
1 by choosing any smooth curve γ in M(n,R) with γ(0) = In and γ′(0) = B.
Evidently γ(t) = In + tB works. Thus we calculate

(φ ◦ γ)(t) = (In + tB)T (In + tB) = In + t(B +BT ) + t2BTB,

from which we can immediately identify the derivative as the linear term B +BT .
Therefore

dφIn(B) = (φ ◦ γ)′(0) = B +BT

for any B ∈ M(n,R). This expression makes it clear that im dφIn is contained
in the group of symmetric n× n matrices, but in fact for any symmetric matrix
B ∈M(n,R) we have

dφIn

(
1

2
B

)
=

1

2
(B +BT ) = B

so im dφIn is exactly the group of symmetric n × n matrices. As a result, the
dimension of the image of the differential is

dim im dφIn = n(n+ 1)/2

since any symmetric matrix is completely determined by the n(n+ 1)/2 entries on
and above the diagonal. Therefore

dimO(n) = n2 − dim im dφIn = n2 − n(n+ 1)/2 = n(n− 1)/2.

Summary (Constructing embedded Lie subgroups). With the orthogonal group as
our paradigmatic example, let’s summarize the process for constructing embedded
Lie subgroups. Suppose we have a smooth manifold M and we want to construct
an embedded submanifold S ⊆M , or prove that a given subset is an embedded
submanifold. One method is as follows:

1. Find a Lie group G acting smoothly on M and N , such that the G-action
on M is transitive.

2. Construct a G-equivariant smooth map φ : M → N with S = φ−1(p) for
some p ∈ N .

3. Then the equivariant rank theorem implies that φ has constant rank, so by
the constant rank level set theorem it follows that S = φ−1(p) is an embedded
submanifold of M . Moreover, we have dimS = dimM − rankφ.

4. Additionally, if M is a Lie group and S is a subgroup, then S is an embedded
Lie subgroup by Fact 5.

5 Quotient topology
The goal for the next part of this note is to investigate the following important
question: given a Lie group G acting smoothly on a smooth manifold M , when is
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the orbit space M/G also a smooth manifold? In order to state and prove some
theorems regarding this question, we will need to know some basic facts about the
topology on the set of orbits M/G (i.e. the quotient topology). The purpose of
this section is to collect these preliminary facts before moving on to the smooth
structure of this set, i.e. the subject of quotient manifolds.

Let X be a topological space and ∼ an equivalence relation on X. Denote
the resulting set of equivalence classes by X/∼, and let q : X → X/∼ denote
the canonical projection. The definition of the quotient topology is motivated by
our desire to put a suitable topology on the set X/∼, turning it into a quotient
space. Inspired by the characteristic property which defines such topologies as the
subspace topology, product topology, etc., we might demand that any f : X/∼→ Y
be continuous if and only if f ◦ q : X → Y is continuous. This turns out to be
equivalent to the demand that U ⊆ X/∼ be open if and only if q−1(U) ⊆ X is
open. This is precisely the quotient topology on X/∼.

X

X/∼ Y
f

q f◦q

More generally: suppose we have two topological spaces X and Y and a
surjection q : X → Y (thinking of the previous situation where q is the canonical
projection onto X/∼). We say that q is a quotient map if it has the property
that: U ⊆ Y is open in Y if and only if q−1(U) is open in X. Notice that one
direction of this property is exactly continuity, so in particular quotient maps are
continuous.

Fact 12. Let X be a topological space and Y a set. If q : X → Y is a surjective
function, then there exists exactly one topology on Y for which q is a quotient map.
This topology is called the quotient topology on Y .

Proof. By analogy with our description of the topology on X/∼, we define a
topology on Y by saying that U ⊆ Y is open if and only if q−1(U) ⊆ X is open.
It’s straightforward to check that this indeed defines a topology on Y . Obviously
q is a quotient map with respect to this topology. We just need to show that this
is the unique topology for which q is a quotient map. Call the aforementioned
topology T and suppose that T ′ is another topology on Y for which q is a quotient
map. Then we have U ∈ T ′ if and only if q−1(U) is open in X if and only if U ∈ T ,
so T = T ′.

Thus, given a surjective map q : X → Y , the quotient topology on Y is the
unique topology which turns q into a quotient map. In this case, equipping Y
with the quotient topology, we say that Y is a quotient of X or simply call Y a
quotient space. In light of the previous fact, saying that q : X → Y is a quotient
map automatically implies that Y is equipped with the quotient topology.

Fact 13 (Characteristic property of the quotient topology). Let q : X → Y be a
quotient map, Z any topological space and f : Y → Z any function. Then f is
continuous if and only if f ◦ q : X → Z is continuous.
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Suppose we have a quotient map q : X → Y and a continuous map g : X → Z.
Since Y is a quotient of X, it’s natural to wonder when it’s possible to complete
the diagram by passing from g to a continuous map g̃ : Y → Z. In the event that
such a completion is possible, we say that “g descends to the quotient” via g̃. We
have the following useful characterization:

Fact 14 (Descending to the quotient). Let q : X → Y be a quotient map and
g : X → Z a continuous map. Then the following are equivalent:

(i) There exists a unique continuous map g̃ : Y → Z such that g = g̃ ◦ q.
(ii) q(x1) = q(x2) =⇒ g(x1) = g(x2) for every x1, x2 ∈ X.

Moreover, the map g̃ is injective if and only if q(x1) = q(x2) ⇐⇒ g(x1) = g(x2)
holds.

Proof. First suppose that there exists a map g̃ such that g = g̃ ◦ q. Note that, by
the characteristic property in Fact 13, g̃ is continuous because g is continuous. If
q(x1) = q(x2), then g̃(q(x1)) = g̃(q(x2)), hence g(x1) = g(x2).

Conversely, suppose that (b) holds. Let y ∈ Y . Since q is surjective, there
exists an x ∈ X such that y = q(x). Define g̃ : Y → Z by g̃(y) = g(x). Then g̃
is well-defined because if y1 = q(x1) and y2 = q(x2) are such that y1 = y2, then
q(x1) = q(x2) and this implies by assumption (b) that g(x1) = g(x2). Hence by
our definition of g̃ we have g̃(y1) = g(x1) = g(x2) = g̃(y2). This shows that g̃
is well-defined. Now for every y ∈ Y if y = q(x) then g̃(q(x)) = g̃(y) = g(x) so
g̃ ◦ q = g.

For the last statement, suppose that the map g̃ exists. If g̃ is injective and
g(x1) = g(x2) then g̃(q(x1)) = g̃(q(x2)), but since g̃ is injective we have q(x1) =
q(x2), hence we have shown the converse of (b) as desired. On the other hand,
suppose that q(x1) = q(x2) ⇐⇒ g(x1) = g(x2). Let g̃(y1) = g̃(y2) where
y1 = q(x1) and y2 = q(x2). Then g̃(q(x1)) = g̃(q(x2)). We want to show that g̃
is injective. Since g̃ ◦ q = g we have g(x1) = g(x2) but then it follows (from our
assumption) that q(x1) = q(x2) and hence y1 = y2. Thus g̃ is injective.

X Z

Y

q

g

g̃

Condition (ii) in Fact 14 can be summarized by saying that “g is constant on
the fibers of q”, and the relation in the last line of Fact 14, “q(x1) = q(x2) ⇐⇒
g(x1) = g(x2) for every x1, x2 ∈ X,” is summarized by the statement that “q and
g make the same identifications”. Thus with this terminology, Fact 14 says that:

• g descends to the quotient via g̃ if and only if g is constant on the fibers of q.

• The induced map g̃ on the quotient is injective if and only if g and q make
the same identifications.

We can use Fact 14 to prove the following theorem, giving us a nice condition
for determining that two quotients of the same space X are homeomorphic.
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Theorem 7. Let q : X → Y and p : X → Z be quotient maps. Suppose that p
and q make the same identifications; that is,

p(x1) = p(x2) ⇐⇒ q(x1) = q(x2)

for every x1, x2 ∈ X. Then Y and Z are homeomorphic.

Proof. By Fact 14 there exists a unique continuous map p̃ : Y → Z such that
p̃ ◦ q = p. We will show that p̃ is a homeomorphism. Also by Fact 14, p̃ is injective.
Since p is surjective, p̃ must also be surjective. Thus p̃ is a continuous bijection.

X Y X Z

Z Y

q

p

p̃

q

p
q̃

Since p and q are both quotient maps, we can apply Fact 14 again with the
roles of p and q reversed to get the diagram on the right and the unique continuous
bijection q̃ : Z → Y such that q̃ ◦ p = q. Composing both sides of this equation
with p̃ on the left, we get p̃ ◦ q̃ ◦ p = p̃ ◦ q = p. Hence p̃ ◦ q̃ = IdZ is the identity
map on Z. Therefore q̃ is the unique right inverse of p̃. Hence (p̃)−1 = q̃, so the
inverse of p̃ is also continuous. Thus p̃ is a homeomorphism.

The following corollary tells us that every quotient Y of a topological space X
really is a space of equivalence classes, in the sense that it is homeomorphic to
X/∼ with the relation ∼ which identifies two points in X if they lie in the same
fiber of the quotient map q.

Corollary 3. Let q : X → Y be a quotient map. Letting ∼ denote the equivalence
relation on X defined by x1 ∼ x2 if and only if q(x1) = q(x2), we have Y ' X/∼.

Proof. Let p : X → X/∼ be the canonical projection p(x) = [x]. It’s straightfor-
ward to verify that p and q then satisfy

p(x1) = p(x2) ⇐⇒ q(x1) = q(x2)

for every x1, x2 ∈ X, so applying Theorem 7 with Z = X/∼ gives the desired
homeomorphism.

When is a quotient space Hausdorff? Recall the following basic fact from
point-set topology: a topological space X is Hausdorff if and only if the diagonal
∆ = {(x, x) : x ∈ X} ⊆ X × X is closed with respect to the product topology.
There is a similar result for quotient spaces which we will now discuss. Let
q : X → Y be a quotient map and consider the set

R = {(x1, x2) : q(x1) = q(x2)} ⊆ X ×X.

Observe that R = (q × q)−1(∆), so if Y is Hausdorff then ∆ is closed in Y × Y
and therefore R is closed in X ×X; hence, a necessary condition for a quotient of
X to be Hausdorff is that the set R be closed in X ×X. In fact, the converse is
also true provided that q is an open map or alternatively that X is compact and
Hausdorff.
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Fact 15 (Hausdorff quotient space). Let q : X → Y be a quotient map, and
suppose that one of the following holds:

(i) q is an open map.

(ii) X is a compact Hausdorff space.

Then Y is Hausdorff if and only if R ⊆ X ×X is closed.

Proof. In each case it will suffice to prove the “if” direction because the other
direction has already been proved. Thus, we assume that R is closed and we aim
to prove that Y is Hausdorff.

First suppose that q is an open map. Then q × q is an open map, and we need
only observe that the diagonal ∆ ⊆ Y × Y is closed, because its complement is
(using the surjectivity of q)

∆c = {(q(x1), q(x2)) : q(x1) 6= q(x2)} = (q × q)(Rc)

which is open as the image of the open set Rc under q × q.
Now suppose that X is a compact Hausdorff space. We will show that q is a

closed map. Let p1, p2 : X ×X → X denote the projections onto the first and
second factors, respectively. Note that the projections are closed maps because X
is compact Hausdorff. Taking any closed set C ⊆ X, we have

q−1(q(C)) = {x ∈ X : q(x) ∈ q(C)}
= {x ∈ X : q(x) = q(c) for some c ∈ C}
= {x ∈ X : (x, c) ∈ R for some c ∈ C}
= p1(p

−1
2 (C) ∩R)

which is closed because R is closed, p2 is continuous, and p1 is closed. Thus q(C)
is closed by definition of the quotient topology on Y , and q is a closed map. As a
result, every point {q(x)} is closed in Y . Take any two distinct points q(a) and
q(b) in Y . Then q−1({q(a)}) and q−1({q(b)}) are disjoint closed subsets of X, and
since X is compact Hausdorff it is normal, so we can find disjoint open sets Ua
and Ub in X containing q−1({q(a)}) and q−1({q(b)}), respectively. Now we can
construct open sets Va and Vb in Y such that

q(a) ∈ Va and q−1(Va) ⊆ Ua
q(b) ∈ Vb and q−1(Vb) ⊆ Ub

and since Ua and Ub are disjoint from each other, so too are Va and Vb. We
conclude that Y is Hausdorff.

Remark. In the above proof it may be tempting to use the fact that (q×q)(R) = ∆,
from which we seem to conclude that ∆ is closed in Y × Y whenever R is closed
in X ×X; however, this reasoning would be erroneous, because the product of
two closed maps need not be a closed map (much unlike the situation for open
maps). Thus, in (ii) we needed to use the full strength of the assumption that X
was compact and Hausdorff.
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6 Quotient manifolds
The analogue of quotient maps for smooth manifolds are smooth submersions,
which play much the same role in the study of quotient manifolds as do quotient
maps in the study of topological quotient spaces. Facts 13 and 14 and Theorem
7 have direct analogues for smooth submersions. We will start by proving these
analogous results because they will be very useful later.

Fact 16. Let q : M → N be a smooth submersion. Then q is an open map, and if
it’s surjective then it’s a quotient map.

Proof. The second statement follows from the first because an open surjective
smooth submersion is a quotient map. In order to show that q is an open map, take
any open set W ⊆ M and consider the image q(W ) ⊆ N . For any q(x) ∈ q(W )
use the local submersion theorem (Theorem 1) to select smooth charts ϕ around x
and ψ around q(x) for which q̂ = ψ ◦ f ◦ ϕ−1 is the projection Rm → Rn onto the
first n coordinates. Letting U ⊆W denote the domain of ϕ and V the domain of
ψ, we have

q|U = ψ−1 ◦ q̂ ◦ ϕ : U
ϕ−→ ϕ(U) ⊆ Rm q̂−→ ψ(V ) ⊆ Rn ψ−1

−−→ V.

Hence q(U) = ψ−1 ◦ q̂ ◦ ϕ(U) ⊆ q(W ) is an open neighborhood of y contained in
q(W ), since the projection q̂ is clearly an open map and ψ and ϕ are diffeomor-
phisms. We conclude that q(W ) is open and q is an open map.

Fact 17 (Characteristic property of surjective smooth submersions). Let q : M →
N be a surjective smooth submersions, P any smooth manifold, and F : N → P
any map. Then F is smooth if and only if F ◦ q : M → P is smooth.

Proof. If F is smooth then F ◦ q is smooth by composition. Conversely, suppose
that F ◦ q is smooth and take any y ∈ N . Since q is surjective we can find some
x ∈ q−1(y), and then apply the local submersion theorem to select smooth charts
ϕ : U ⊆ M → Rm around x and ψ : V ⊆ N → Rn around y (without loss
of generality both centered at 0) with respect to which q the local coordinate
representation

q̂(x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn).

Now define σ̂ : Rn → Rm by

σ̂(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0),

and note that q̂ ◦ σ̂ = idRn . Choose an open cube C ⊆ ψ(V ) around 0, small
enough so that σ̂(C) ⊆ ϕ(U), and define σ : ψ−1(C) ⊆ N → U ⊆M by

σ = ϕ−1 ◦ σ̂ ◦ ψ : ψ−1(C) ⊆ N ψ−→ C
σ̂−→ ϕ(U)

ϕ−1

−−→ U

so that inside ψ−1(C) we then have,

q ◦ σ = q ◦ (ϕ−1 ◦ σ̂ ◦ ψ)

= (ψ−1 ◦ q̂) ◦ (σ̂ ◦ ψ)

= ψ−1 ◦ idRn ◦ ψ
= id |ψ−1(C).
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Therefore
F |ψ−1(C) = F |ψ−1(C) ◦ idψ−1(C) = (F |ψ−1(C) ◦ q) ◦ σ

which is smooth as a composition of smooth maps. Having shown that F is smooth
in a neighborhood of any point y ∈ N , we conclude that F is smooth.

M P

N

q

F

F̃

Fact 18 (Descending smoothly to the quotient). Let q : M → N be a surjective
smooth submersion and F : M → P any smooth map. Then the following are
equivalent:

(i) There exists a unique smooth map F̃ : N → P satisfying F = F̃ ◦ q.
(ii) F is constant on the fibers of q; i.e. q(x1) = q(x2) ⇒ F (x1) = F (x2) for

every x1, x2 ∈M .

Proof. Note that the map q is a quotient map by Fact 16. Thus by the analogous
result for quotient maps, Fact 14, there exists a continuous map F̃ satisfying
F = F̃ ◦ q if and only if condition (ii) holds. Then F is smooth if and only if F̃ ◦ q
is smooth, if and only if F̃ is smooth by the characteristic property of Fact 17.

Theorem 8. If q1 : M → N1 and q2 : M → N2 are surjective smooth submersions
which make the same identifications, then there exists a diffeomorphism F : N1 →
N2 such that F ◦ q1 = q2.

Proof. By the analogous result for quotient maps, we know that there is a homeo-
morphism F : N1 → N2 such that F ◦ q1 = q2, so all we need to do is prove that
F and F−1 are both smooth. But this follows immediately from the characteristic
property for surjective smooth submersions because q2 = F ◦ q1 and q1 = F−1 ◦ q2
are both smooth.

Suppose a topological group G acts continuously on a topological space M ,
and denote it by θ : G×M →M with θ(g, p) = g · p. The orbit of any p ∈M is
the subset

G · p = {g · p : g ∈ G}

and we can define an equivalence relation on M by p ∼ q if and only if q ∈ G ·p; i.e.
if and only if there exists some g ∈ G such that q = g · p. This relation partitions
M into orbits of G, and we can take the quotient

M/G = {G · p : p ∈M}

which is a topological space equipped with the quotient topology associated with
the natural quotient map q : M →M/G given by q(x) = G · x. We call this the
orbit space of the G-action on M .

Fact 19. Let G be a topological group acting continuously on a topological space
M . Then the quotient map q : M →M/G is an open map.
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Proof. Take any open set U ⊆M . Then q(U) = {G · u : u ∈ U} and therefore

q−1(q(U)) = {x ∈M : q(x) ∈ q(U)}
= {x ∈M : G · x = G · u for some u ∈ U}
= {x ∈M : x ∈ G · u for some u ∈ U}

=
⋃
u∈U

G · u

=
⋃
g∈G

g · U

=
⋃
g∈G

θg(U)

which is a union of open sets since each θg is a homeomorphism of M . Since q
is a quotient map, this implies that q(U) is open in M/G and thus q is an open
map.

We are mostly interested in studying the orbit spaces of smooth Lie group
actions on smooth manifolds. Occasionally, because many of the concepts don’t
require the smooth structure, it suffices to consider continuous actions of topological
groups.

Example 7 (Orbit spaces of smooth Lie group actions).

(a) Let G be any group and M any smooth manifold, the trivial action g · p = p
foe every p ∈ M and g ∈ G has the orbit space M/G = M , so the orbit
space is trivially a smooth manifold.

(b) Rk acts on Rk × Rn by translation in the Rk factor: v · (x, y) = (v + x, y).
The orbit of (x, y) ∈ Rk × Rn is the affine subspace Rk × {y} parallel to Rk,
and hence the orbit space is the smooth manifold

(Rk × Rn)/Rk = {Rk × {y} : y ∈ Rn} ' Rn.

(c) The circle group S1 acts on the complex plane C by multiplication: z ·w = zw
for every z ∈ S1 and w ∈ C. The orbit of w ∈ C is the circle of radius |w|
centered at the origin, since multiplying by eiθ ∈ S1 has the effect of rotating
w counterclockwise by an angle of θ.
Let q : C → C/S1 denote the quotient map, then q(u) = q(v) holds if and
only if u = eiθv for some θ ∈ R; i.e. if and only if |u| = |v|. Thus we have
a continuous map f : C → [0,∞) given by f(u) = |u| making the same
identifications as q, and by Theorem 7 we conclude that the orbit space
is C/S1 is homeomorphic to [0,∞). In particular, the orbit space is not a
smooth manifold (but rather a smooth manifold with boundary).

(d) The general linear group GL(n,R) acts naturally on Rn via matrix multipli-
cation (A, x) 7→ Ax. As we previously noted, there are exactly two orbits:
{0} and Rn \ {0}. Thus the orbit space is

X = Rn/GL(n,R) = {{0},Rn \ {0}}

and the open sets in this space are exactly ∅, X, and {Rn \{0}} (the subsets
of X whose pre-image under the quotient map are open). So evidently the
orbit space is not Hausdorff, because {0} cannot be separated from Rn \ {0},
and thus it’s not a manifold.
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(e) Restricting the action in (d), the orthogonal group O(n) acts on Rn via
matrix multiplication. Since this action has the effect of rotation, the orbit
of any x ∈ Rn is the sphere of radius |x| centered at 0 in Rn. As in example
(c), the orbit space Rn/O(n) is homeomorphic to [0,∞), because the natural
quotient map makes the same identifications as the magnitude function
f : Rn → [0,∞), f(x) = |x|.

(f) Note that if we delete the origin from the previous three examples (c), (d),
and (e), we have

C×/S1 ' (0,∞)

(Rn \ {0})/GL(n,R) ' {Rn \ {0}}
(Rn \ {0})/O(n) ' (0,∞)

and evidently all three orbit spaces are now smooth manifolds with this
modification.

The modification exhibited in example (f) suggests that we should consider
free group actions, since in each of the examples (c), (d), and (e) failing to produce
smooth orbit spaces, the origin was fixed by every g ∈ G. However, this is not a
necessary condition (as example (a) shows), nor is it sufficient, as the following
example shows:

Example 8. Let R act on the torus T2 = S1 × S1 via an irrational rotation by
α ∈ R \Q; i.e. for every t ∈ R and (w, z) ∈ T2 define

t · (w, z) = (e2πitw, e2πiαtz).

It’s not difficult to verify that this is a smooth, free action, whose orbits are dense
subspaces of T2. Hence the only open sets in the orbit space T2/R with respect to
the quotient topology are ∅ and T2/R itself; i.e. the orbit space has the trivial
topology and is therefore not Hausdorff and also not a manifold.

These examples indicate that we should introduce another restriction if we want
to ensure that the orbit space has a smooth manifold structure: we say that a (left)
action of a Lie group G on a smooth manifold M is a proper action, or that G
acts properly on M , if the map Θ : G×M →M ×M given by Θ(g, p) = (g ·p, p)
is a proper map. Recall that a map f : X → Y between topological spaces is
proper if, for any compact subset K ⊆ Y , the pre-image f−1(K) ⊆ X is compact.
A similar definition can be made for right Lie group actions.

At this point we should pause for a moment and make a few remarks about the
notion of a proper Lie group action. To say that a Lie group G acts properly on M
does not mean that the map θ : G×M →M defining the action is a proper map;
in fact the definition of a proper action is slightly weaker than this. Indeed, suppose
that θ : G×M →M is a proper map. We will show that G acts properly onM – i.e.
we need to check that the aforementioned map Θ : G×M →M×M is proper. Let
C ⊆M ×M be compact, and let π1 : M ×M →M and π2 : M ×M →M denote
the projections onto the first and second factor, respectively. Then C1 = π1(C)
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and C2 = π2(C) are compact, and we have

Θ−1(C) = {(g, p) : (g · p, p) ∈ C}
= {(g, p) : (θ(g, p), p) ∈ C}
= {(g, p) : θ(g, p) ∈ C1 and p ∈ C2}
= {(g, p) : (g, p) ∈ θ−1(C1) and p ∈ C2}
= θ−1(π1(C)) ∩ (G× π2(C)).

Note that in the last line θ−1(π1(C)) is compact since we have assumed that θ is a
proper map, and G× π2(C) is closed, hence Θ−1(C) is compact as a closed subset
of a compact set. Thus Θ is a proper map and G acts properly on M .

On the other hand, the converse is not true: the group action θ need not be
a proper map whenever G acts properly on M . In order to see why, we note the
following fact:

Fact 20. Let G be a Lie group acting continuously on a smooth manifold M . If
the group action θ : G×M →M is a proper map, then G is compact.

Proof. Suppose θ is a proper map. For any x0 ∈ M , the singleton {x0} ⊆ M
is compact, so θ−1(x0) = {(g, x) : g · x = x0} ⊆ G ×M is compact. Letting
π1 : G×M → G denote the projection onto G, the composition

π1 ◦ i : θ−1(x0)
i
↪−→ G×M π1−→ G

is surjective: for any g ∈ G we can find some x ∈M for which g · x = x0, namely
x = g−1 · x0. In other words this pair (g, x) ∈ θ−1(x0) satisfies (π1 ◦ i)(g, x) = g.
Thus G = π1(i(θ

−1(x0))) is compact because π1 and i are both continuous.

So in order to construct a counterexample it suffices merely to find a non-
compact Lie group G acting properly on a smooth manifold M . For example, Rk
acts properly on X = Rk × Rn by translation in the first k-coordinates, because
the pre-image of any compact K ⊆ X under Θ is

Θ−1(K) = π2(K) ∩ (π1(K)− (v, 0))

where the action translates by v ∈ Rk, and π1 and π2 denote the natural projections
onto the Rk and Rn factors. Since Rk is not compact, the group action θ cannot
be a proper map. In summary, the properness of the action map is sufficient but
not necessary for the group to act properly, and it would be far too strong to
define “proper action” in terms of the properness of the action map because such a
definition would require the Lie group to be compact.

Fact 21. If a Lie group G acts continuously and properly on a smooth manifold
M then the orbit space M/G is Hausdorff.

Proof. Since G acts properly on M , the map Θ : G ×M → M ×M given by
Θ(g, p) = (g · p, p) is proper. Let q : M →M/G denote the natural quotient map.
As in Fact 15 we consider the set R = {(a, b) : q(a) = q(b)} ⊆M ×M . We have

R = {(a, b) : q(a) = q(b)}
= {(a, b) : G · a = G · b}
= {(a, b) : a = g · b for some g ∈ G}
= {(g · b, b) : g ∈ G, b ∈M}
= Θ(G×M).
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But Θ is a closed map because proper continuous maps are closed, so R is closed
in M ×M and thus M/G is Hausdorff by Fact 15

Fact 22 (Characterizations of proper actions). Let G be a Lie group acting
continuously on a smooth manifold M . Then the following are equivalent:

(i) G acts properly on M .

(ii) A sequence (gi) in G has a convergent sequence whenever there exists a
sequence (pi) in M such that both (pi) and (gi · pi) converge.

(iii) For every compact subset K ⊆M , the set

GK = {g ∈ G : (g ·K) ∩K 6= ∅} ⊆ G

is compact.

Proof. As usual, we let Θ : G×M →M ×M denote the map Θ(g, p) = (g · p, p).
(i) ⇒ (ii). Suppose that G acts properly on M , so that Θ is a proper map. Let

(gi) be a sequence in G, and let (pi) be a sequence in M such that both (pi) and
(gi · pi) converge in M , say pi → p and gi · pi → q. We need to show that (gi) has
a convergent subsequence.

Since the manifold M is a locally compact Hausdorff space it has a basis
consisting of precompact open neighborhoods, hence we can choose two precompact
open neighborhoods U and V around p and q, respectively. Thus, when i is large
enough, Θ(gi, pi) = (gi · pi, pi) lies in the compact set V × U ⊆ M ×M . So the
pair (gi, pi) lies in the compact pre-image Θ−1(V × U), hence this sequence of
pairs has a convergent subsequence, and so (gi) also has a convergent subsequence.

(ii) ⇒ (iii). Let K ⊆M be compact. Aiming to show that GK is sequentially
compact, take any sequence (gi) inGK . Then for every i, the intersection (gi·K)∩K
is nonempty, and we can select a point pi ∈ (gi ·K)∩K; in particular, pi ∈ K and
g−1i · pi ∈ K for every i. Since K is compact, (pi) has a convergent subsequence in
K and without loss of generality we assume that (pi) converges. Similarly, (g−1i ·pi)
has a convergent subsequence, say (g−1ij · pij ) ⊆ (g−1i · pi) in K. Thus (g−1ij ) is a
sequence in G such that both (pij ) and (g−1ij · pij ) converge in M , and by condition
(ii) this means that (g−1ij ) has a convergent subsequence. This also means that
(gij ) has a convergent subsequence, which yields a convergent subsequence of the
original sequence (gi). We conclude that GK is sequentially compact, as desired.

(iii) ⇒ (i). Take any compact L ⊆M ×M . We need to show that Θ−1(L) ⊆
G×M is compact. Let π1, π2 : M ×M →M denote the projections onto the first
and second factors, respectively, and set K = π1(L) ∪ π2(L) ⊆M . Note that K is
compact as the union of two compact sets. We have

Θ−1(L) = {(g, p) ∈ G×M : (g · p, p) ∈ L}
= (g, p) : g · p ∈ π1(L) and p ∈ π2(L)}

and note that g · p ∈ π1(L) implies that p ∈ g−1 · π1(L). Thus, θ−1(L) consists of
precisely those pairs (g, p) such that p ∈ (g−1 · π1(L)) ∩ π2(L). But this latter set
is contained inside (g−1 ·K) ∩K because K contains both π1(L) and π2(L) by
definition. Therefore

Θ−1(L) ⊆ {(g, p) : p ∈ (g−1 ·K) ∩K} ⊆ GK ×K

and GK is compact by assumption, so Θ−1(L) is compact as a closed subset of a
compact set. We conclude that Θ is a proper map and G acts properly on M .
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Heuristically, the set GK defined in condition (iii) of Fact 22 consists of those
group elements which move K only slightly, so that the new set still intersects
K. Thus, to say that GK is compact means intuitively that almost every group
element moves K far away from itself.

Corollary 4. Every continuous action by a compact Lie group on a smooth
manifold is proper.

Proof. In this case, condition (ii) in Fact 22 is trivially satisfied because every
sequence in the Lie group has a convergent subsequence by compactness.

With this corollary we have slightly refined an implication we previously
established with Fact 20. In summary we have completed the following sequence
of implications for a Lie group G acting continuously on a smooth manifold M :
[the G-action θ is a proper map] ⇒ [G is compact] ⇒ [G acts properly on M ].

Fact 23 (Orbits of proper actions). Suppose a Lie group G acts smoothly and
properly on a smooth manifold M . Then for any p ∈ M the orbit map θ(p) is
proper, and consequently:

(i) Orbits G · p = θ(p)(G) are closed in M .

(ii) Stabilizers Gp =
(
θ(p)
)−1

(p) are compact subgroups of G.

(iii) If Gp = {e} then θ(p) is a smooth embedding and G · p is an embedded
submanifold.

Proof. We fix some p ∈ G and show first of all that θ(p) is a proper map. Taking
any compact K ⊆M , the pre-image

(
θ(p)
)−1

(K) is closed in G by continuity, and
moreover (

θ(p)
)−1

(K) = {g ∈ G : g · p ∈ K}

= {g ∈ G : p ∈ g−1 ·K}
⊆ GK∪{p}

because if g ∈
(
θ(p)
)−1

(K) then p ∈ g−1 ·K certainly implies p ∈ g−1 · (K ∪ {p}),
hence p ∈ (g−1 ·K ∪{p})∩ (K ∪{p}) and thus g ∈ GK∪{p}. Since G acts properly,
this latter set is compact by Fact 22, and

(
θ(p)
)−1

(K) is compact as a closed
subset of a compact set. Consequently:

(i) θ(p) is a closed map because proper continuous maps are closed, hence the
orbit G · p is closed as the image of G under a closed map.

(ii) Each stabilizer Gp is compact as the pre-image of the compact set {p} under
the proper map θ(p), and they’re also subgroups of G for algebraic reasons.

(iii) If Gp = {e} then by Fact 11 the orbit map θ(p) is an injective smooth
immersion, but it’s also a closed map, so it’s a smooth embedding. Hence
G · p = θ(p) is an embedded submanifold of M .

Finally, we can state a very important theorem which establishes sufficient
conditions for the orbit space M/G of a smooth Lie group action to be a smooth
manifold; although we will forego the proof because it involves the machinery of
foliations and integral manifolds of geometric distributions.
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Theorem 9 (Quotient manifold theorem). Let G be a Lie group acting smoothly,
freely, and properly on a smooth manifold M . Then:

• The orbit space M/G is a topological manifold with dimension dimM/G =
dimM − dimG.

• M/G admits a unique smooth structure for which the natural quotient map
q : M →M/G is a smooth submersion.

Next we will use the quotient manifold theorem to construct and characterize
an important class of manifolds: those equipped with transitive Lie group actions.

7 Homogeneous spaces
One of the most important aspect of Lie groups is that any point can be mapped
to any other via a diffeomorphism; namely Lgh−1(h) = gh−1h = g for any g, h ∈ G.
In other words, every Lie group is endowed with a transitive smooth action by a Lie
group (just acting on itself via left multiplication). In general, a smooth manifold
with this property, that there is a Lie group G acting smoothly and transitively
upon it, is called a homogeneous space or a homogeneous G-space. Of course,
we could relax several components of this definition and say that a homogeneous
space is a topological space equipped with a continuous transitive action by a
topological group, but for the purposes of this note we will just focus on the setting
of smooth manifolds and Lie groups.

Our goal in this section is to use the quotient manifold theorem to prove
two fundamental results about homogeneous spaces: a construction theorem and
a characterization theorem. First we start with some important examples of
homogeneous spaces.

Example 9 (Homogeneous spaces).

(a) The natural action of O(n) on Sn−1 ⊆ Rn via matrix multiplication is transi-
tive because any unit vector can be mapped to any other by an appropriate
combination of rotations. Hence Sn−1 is a homogeneous O(n)-space.

(b) The action of O(n) on Sn−1 restricts to an action of SO(n) on Sn−1. For
n = 1 this action is trivial because SO(1) is the trivial group, and for n > 1
the action is transitive by the same reasoning as above. Thus Sn−1 is a
homogeneous SO(n)-space for n ≥ 2.

(c) SL(2,R) acts smoothly and transitively on the upper-half complex plane
U = {z ∈ C : Im z > 0} by the formula[

a b
c d

]
· z =

az + b

cz + d
.

For any A =

[
a b
c d

]
∈ SL(2,R), the complex-analytic diffeomorphism U → U

given by z 7→ (az + b)/(cz + d) is called a Mobius transformation. Hence the
upper-half plane U is a homogeneous SL(2,R)-space.

(d) For n ≥ 1, the natural action of GL(n,C) on Cn restricts to a smooth action
of U(n) on S2n−1 ⊆ Cn. This action is transitive for n ≥ 1. Similarly, the
action of GL(n,C) restricts to a smooth action of SU(n) on S2n−1, and this
action is transitive for n ≥ 2.
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Let G be a Lie group and H ⊆ G any Lie subgroup. Recall that a left coset
of H is a subset of G of the form

gH = {gh : h ∈ H}

for some g ∈ G. The left cosets of H partition G, as they correspond to equivalence
classes of the equivalence relation a ∼ b if and only if aH = bH; i.e. a ∼ b if and
only if a−1b ∈ H. The resulting quotient space is

G/H = {gH : g ∈ G},

equipped with the quotient topology. We call this space the left coset space of
G modulo H. Notice that, if we let H act on G by right multiplication,

H ×G→ G, (h, g) 7→ gh,

then the orbits are the left cosets H · g = gH. Thus the left coset space G/H is
exactly the orbit space determined by the action of right multiplication of H on G.

Theorem 10 (Homogeneous space construction theorem). Let G be a Lie group
and H ⊆ G any closed Lie subgroup. Then:

(i) G/H is a topological manifold with dimension dimG/H = dimG− dimH.

(ii) G/H has a unique smooth structure such that the natural quotient map
q : G→ G/H is a smooth submersion.

(iii) G/H is a homogeneous G-space with respect to the left G-action a · (bH) =
abH.

Proof. Throughout the proof, we consider the right multiplication action of H on
G (so that the orbit space is G/H). We start with the following straightforward
observations:

• H ⊆ G is an embedded Lie subgroup of G by Theorem 5, so the inclusion
H ↪→ G is a smooth embedding. Thus the action of H on G is smooth as
the restriction of the smooth multiplication map in G.

• H acts freely on G because g = h · g = gh implies that h = e.

• H acts properly on M . Indeed, let (hi) be any sequence in H and suppose
we can find a sequence (gi) in G such that both (gi) and (gihi) converge in
G. Then (g−1i ) also converges by continuity of the inversion map, and

hi = g−1i (gihi) = m(g−1i , gihi)

so (hi) converges in G by continuity of the multiplication map m. Since
H ⊆ G is closed and (hi) ⊆ H we conclude that (hi) converges in H. Thus
the action is proper by Fact 22.

Since H acts smoothly, freely and properly on G to produce the orbit space G/H,
the quotient manifold theorem shows that G/H is a topological manifold with
dimension dimG/H = dimG− dimH, with a unique smooth structure making
the natural quotient map a smooth submersion. All that remains is to check that
G/H is a homogeneous G-space; i.e. that the action θ : G × G/H → G/H is
smooth and transitive.
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Since q is a surjective smooth submersion, so too is idG×q : G×G→ G×G/H,
and it’s easy to check that q ◦m is constant on the fibers of idG×q. Thus by Fact
18 there is a unique smooth map G×G/H → G/H completing the diagram; in
fact it must be the action θ because the latter satisfies θ ◦ (idG×q) = q ◦m. We
conclude that θ is well-defined and smooth, and it’s also transitive because for any
a, b ∈ G we have (ba−1) · aH = bH.

Due to the closed subgroup theorem (Theorem 5), we can actually remove the
assumption that H ⊆ G be a closed Lie subgroup; in fact it suffices to assume
that H is any closed subgroup. This significantly expands our class of known
homogeneous spaces.

In summary, the construction theorem tells us that we can construct examples
of homogeneous spaces by taking left coset spaces of Lie groups modulo closed
subgroups. The following theorem actually shows that every homogeneous space
has the form given by the construction theorem, i.e. every homogeneous space is a
quotient of a Lie group by some closed subgroup.

Theorem 11 (Homogeneous space characterization theorem). Let G be a Lie
group and let M be a homogeneous G-space. For any p ∈M , the stabilizer Gp is a
closed subgroup of G, and the map F : G/Gp →M given by F (gGp) = g · p is an
equivariant diffeomorphism.

Proof. The stabilizer is a subgroup for algebraic reasons, and it’s closed by conti-
nuity of the orbit map θ(p) : G→M . Hence by Theorem 10 we know that G/Gp is
a topological manifold admitting a unique smooth structure such that the natural
quotient map q : G→ G/H is a smooth submersion. Note that θ(p) is constant on
the fibers of q because for every g1, g2 ∈ G, we have

q(g1) = q(g2)⇒ g1Gp = g2Gp

⇒ g−12 g1 = h ∈ Gp
⇒ θ(p)(g1) = θ(p)(g2h)

but θ(p)(g2h) = (g2h) · p = g2 · (h · p) = g2 · p = θ(p)(g2) since h stabilizes p. Hence
θ(p)(g1) = θ(p)(g2). Then by Fact 18 θ(p) descends to the quotient, so there exists
a smooth map F : G/Gp →M satisfying F ◦ q = θ(p); that is, F (gGp) = g · p for
every g ∈ G.

In fact, θ(p) is surjective because the G-action is transitive, and it has constant
rank by Fact 11, so it’s also a smooth submersion. It’s easy to check that q is
constant on the fibers of θ(p) (so that q and θ(p) make the same identifications),
thus F is a diffeomorphism by Theorem 8.

Finally, F is equivariant with respect to the G-actions on G/Gp andM because
for every g, h ∈ G we have

F (g · (hGp)) = F (ghGp)

= (gh) · p
= g · (h · p)
= g · F (hGp)
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Thus the characterization theorem says that every homogeneous space arises
as the left coset space of a Lie group modulo some closed subgroup. As a result,
the study of homogeneous spaces can be reduced to the problem of understanding
quotients of Lie groups by closed subgroups: if M is a smooth manifold and G is
a Lie group acting transitively on M , then M ' G/H for some closed subgroup
H ⊆ G, and we can analyze M using all of the available machinery for analyzing
quotient manifolds and orbit spaces. Due to this characterization, in the literature
on homogeneous spaces, authors will simply write “let G/H be a homogeneous
space”. Let’s revisit the previous examples of homogeneous spaces to see what the
characterization theorem tells us about them.

Example 10 (Homogeneous spaces revisited).

(a) Consider the natural action of O(n) on Sn−1 ⊆ Rn for n ≥ 1. Fix the north
pole N = (0, . . . , 0, 1) as our base point. The stabilizer of N in O(n) is the
subgroup of orthogonal transformations of Rn that fix the last coordinate,
i.e. O(n− 1). In the case n = 3, think of holding a ball between two fingers
and spinning it around the z-axis: these transformations are precisely the
rotations of S1. Thus the characterization theorem tells us that Sn−1 is
diffeomorphic to the quotient manifold O(n)/O(n− 1) for n ≥ 1.

(b) Consider the natural action of SO(n) on Sn−1 ⊆ Rn for n ≥ 2. By the same
reasoning as before, the stabilizer subgroup of the north pole N ∈ Sn−1 is
SO(n−1), so Sn−1 is diffeomorphic to the quotient manifold SO(n)/ SO(n−1)
for n ≥ 2.

(c) Consider the action of SL(2,R) on the upper-half plane U ⊆ C via Mobius

transformations. Fix i ∈ U as our base point. Which matrices A =

[
a b
c d

]
∈

SL(2,R) stabilize i? We can solve the equation[
a b
c d

]
· i = i ⇐⇒ ai+ b

ci+ d
= i

to find that this holds if and only if a = d and b = −c, which in turn means

that A =

[
a b
−b a

]
with 1 = detA = a2 + b2. This is precisely the subgroup

SO(2) of 2× 2 special orthogonal matrices. So the characterization theorem
tells us that we have a diffeomorphism U ' SL(2,R)/SO(2).

The homogeneous space characterization theorem can also be used to construct
new examples of smooth manifolds: we can use it to put a smooth manifold
structure on sets that admit transitive Lie group actions.

Theorem 12. Let X be a set and let G be a Lie group acting transitively on X
such that the stabilizer Gp is a closed subgroup of G for some p ∈ X. Then X
has a unique smooth manifold structure for which the G-action is smooth, and
dimX = dimG− dimGp.

Proof. By the characterization theorem, G/Gp is a homogeneous G-space with
dimG/Gp = dimG − dimGp. The natural quotient map q : G → G/Gp is a
surjective smooth submersion, and (just as in the proof of Theorem 11) θ(p) is a
surjective map making the same identifications as q. Hence we get an equivariant
bijection F : G/Gp → X given by F (gGp) = g ·p. We define a topology and smooth
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structure on X by demanding that F be a diffeomorphism; then, with respect to
this structure, the action of G on X is smooth because it can be expressed as

g · x = g · F (F−1(x))

= F (g · F−1(x)) (since F is equivariant)

which is a composition of smooth maps.
It remains to show that this smooth manifold structure is unique. Let X̃ denote

X equipped with any other smooth manifold structure for which the G-action
on X is smooth. Then X̃ and X are both homogeneous G-spaces, so by the
characterization theorem we have diffeomorphisms X ' G/Gp ' X̃.

Example 11 (Grassmannian manifolds). Let V be an n-dimensional real vector
space. For any 0 ≤ k ≤ n, let Gk(V ) denote the set of all k-dimensional linear
subspaces of V . We will show that Gk(V ) can be given the structure of a smooth
manifold of dimension k(n− k), called a Grassmannian manifold. Note that
this construction is a direct generalization of the real projective space because
G1(Rn+1) = RPn.

We define a transitive action of GL(n,R) on Gk(Rn) as follows: given any
subspace A of Rn, let T ∈ GL(n,R) act on A by setting T (A) = {T (a) : a ∈ A};
i.e. T (A) is the image of the restriction of T to the subspace A. Note that a
basis for T (A) can be obtained by applying T to any basis for A. We fix the
base point Rk × {0} ⊆ Rn = Rk × Rn−k and note that the stabilizer group of
Rk × {0} ∈ Gk(V ) is

H =

{[
A B
0 D

]
: A ∈ GL(k,R), B ∈M(k × (n− k),R), D ∈ GL(n− k,R)

}
.

Here’s the reason: first of all A and D must be invertible so that the block matrix
is invertible (recall the determinant formula for upper triangular block matrices).
If the block matrix is going to fix the subspace Rk × {0} then it needs to send any
vector of the form v = (v1, . . . , vk, 0, . . . , 0) to another vector of the same form.
Thus B can be any k× (n−k) matrix because it acts on the last n−k zero entries
of v, and the lower left (n − k) × k block must be zero in order to preserve the
last n− k zeros of v.

Moreover, note that H is a closed subgroup of GL(n,R): if
[
Ai Bi
0 Di

]
is a

sequence in H such that[
Ai Bi
0 Di

]
→
[
A B
0 D

]
∈ GL(n,R)

then

det

[
A B
0 D

]
= det(A) det(D) 6= 0

which implies that det(A) 6= 0 and det(D) 6= 0, hence A ∈ GL(k,R) and D ∈
GL(n− k,R), and the limit point lies in H.

Therefore, by Theorem 12 there is a unique smooth structure on Gk(Rn) for
which the GL(n,R)-action is smooth, and we have an equivariant diffeomorphism
Gk(Rn) ' GL(n,R)/H. Finally, the dimension of the submanifold H is

dimH = k(n− k) + k2 + (n− k)2 = n2 − k(n− k),
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so the dimension of Gk(Rn) is

dimGk(Rn) = dim GL(n,R)− dimH = n2 − (n2 − k(n− k)) = k(n− k).

Summary (Constructing and characterizing homogeneous spaces). Suppose we
have a Lie group G acting smoothly and transitively on a smooth manifold M ,
and we want to characterize M as an orbit space of G. Then we can proceed as
follows:

1. Fix any base point p ∈M .

2. Show that the stabilizer Gp is a closed subgroup of G.

3. Then the characterization theorem tells us that M is equivariantly diffeomor-
phic to G/Gp.

Suppose we have a set X and a Lie group G acting transitively on X, and we want
to put a smooth manifold structure on X. Then we can proceed as follows:

1. Fix any base point x ∈ X.

2. Show that the stabilizer Gx is a closed subgroup of G.

3. Then Theorem 12 tells us that X is a smooth manifold, equivariantly diffeo-
morphic to G/Gx.

8 Connectedness in matrix groups
In this section we will use the matrix group characterizations we established in
Example 10 to analyze the connectedness and connected components of several
important matrix groups.

Fact 24. Let G be a topological group acting continuously, freely, and properly on
a topological space M . If G and M/G are connected, then M is connected.

Proof. Suppose for contradiction that G and M/G are connected, but M is not
connected. Thus we can find disjoint nonempty open subsets U, V ⊆M such that
U ∪ V = M . For each p ∈M , the orbit is G · p = θ(p)(G) ⊆M which is connected
as the image of a connected set under a continuous map, hence each orbit is
completely contained in either U or V . The natural quotient map q : M →M/G
is a smooth submersion, hence also an open map, so q(U) and q(V ) are open
subsets of M/G. Also, q(U) and q(V ) are disjoint: if u ∈ U and v ∈ V are such
that q(u) = q(v) ∈ q(U) ∩ q(V ), then g · u = v for some g ∈ G, which implies
that u and v lie in the same orbit, contradicting the fact that each orbit is fully
contained in either U or V . Therefore M/G = q(M) = q(U ∪ V ) = q(U) ∪ q(V ) is
a separation of M/G, contradicting the assumption that M/G is connected.

In the proof of the following fact we use the characterizations of matrix groups
as homogeneous spaces, as we previously described in Example 10.

Fact 25 (Connectedness of orthogonal and unitary groups). For every n ≥ 1, the
Lie groups SO(n), U(n), and SU(n) are connected. Moreover, O(n) has exactly
two connected components, the identity component being SO(n).
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Proof. • SO(n) is connected. For n = 1, SO(1) is the trivial group, hence
connected. Suppose that SO(n − 1) is connected for some n ≥ 2. Then
SO(n)/ SO(n−1) ' Sn−1 is connected, which implies that SO(n) is connected
by Fact 24. Thus each SO(n) is connected by induction.

• U(n) and SU(n) are connected. This follows from a similar argument as above,
since U(1) ' S1 is connected and for every n ≥ 2 we have U(n)/U(n− 1) '
S2n−1 and SU(n)/ SU(n− 1) ' S2n−1.

• O(n) has exactly two components. We can write the orthogonal group as a
union O(n) = O+(n)∪O−(n) of those orthogonal matrices with positive and
negative determinant (i.e. ±1). It suffices to check that these two subsets
are connected. O+(n) = SO(n) is connected by the above, and O−(n) is
connected because it’s diffeomorphic to SO(n) via left translation by any
reflection in O(n).

Fact 26 (Connectedness of the general linear group). The Lie group GL(n,R) has
exactly two connected components: the open subgroups GL+(n,R) and GL−(n,R)
consisting of those matrices with positive and negative determinant, respectively.

Proof. The separation R× = R+ ∪ R− yields a separation

GL(n,R) = (det)−1(R×)

= (det)−1(R+) ∪ (det)−1(R−)

= GL+(n,R) ∪GL−(n,R)

so it suffices to show that these latter two subsets are (path) connected. We
will prove this by appealing to the decomposition of any invertible matrix into a
product of elementary matrices. For any matrix A ∈ GL+(n,R), we can write A
as a product of elementary matrices

A = E1E2 · · ·Ek

where each Ei has positive determinant. By definition, each matrix Ei is the n×n
identity matrix with exactly one entry changed, say the (pi, qi) entry. Thus we
can write it as

Ei = I +D(pi, qi)

where each matrix D(pi, qi) is a matrix of zeros except for the (pi, qi) entry.
The statement that each elementary matrix has positive determinant essentially
amounts to saying that no row swaps are required when row-reducing A. In
particular, note that we have a smooth path γi : [0, 1] → GL+(n,R) from the
identity matrix I to Ei,

γi(t) = I + tD(pi, qi)

Thus, we can combine these paths to get a smooth path γ(t) = γ1(t) · · · γk(t) from
I to A, and we conclude that GL+(n,R) is connected. As for the matrices with
negative determinant, any matrix B with detB < 0 yields a diffeomorphism by
left-multiplication LB : GL+(n,R) → GL−(n,R) so GL−(n,R) is connected as
well. This completes the proof.
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9 Isomorphism theorem for Lie groups
Another application of the quotient manifold theorem is to extend the first isomor-
phishm theorem from group theory to the setting of Lie groups.

Fact 27. Let G be a Lie group and K ⊆ G a closed normal subgroup. Then the
quotient group G/K is a Lie group and the natural quotient map q : G→ G/K is
a surjective Lie group homomorphism with kernel K.

Proof. We already know from group theory that the quotient G/K is a group
and q : G → G/K is a surjective group homomorphism. The remainder of
the statement (G/K is a Lie group, and q is smooth) follows directly from the
construction theorem (Theorem 10).

Theorem 13 (First isomorphism theorem for Lie groups). Let F be a Lie group
homomorphism. Then:

(i) kerF is a closed normal Lie subgroup of G.

(ii) imF has a unique smooth manifold structure making it into a Lie subgroup
of H.

(iii) F descends to a Lie group isomorphism F̃ : G/ kerF → imF .

In particular, if F is surjective then F̃ yields an isomorphism of Lie groups
G/ kerF ' H.

Proof. The kernel kerF is a normal subgroup of G for algebraic reasons, and
it’s closed as the pre-image of e ∈ G under the continuous map F . Hence it’s
a Lie subgroup by the closed subgroup theorem (Theorem 5), and G/ kerF is a
Lie group (as in Fact 27). The first isomorphism theorem for groups gives us an
injective group homomorphism F̃ : G/ kerF → H with image im F̃ = imF . The
canonical projection q : G → G/ kerF is a surjective Lie group homomorphism,
hence it has constant rank by Fact 4, and so it’s also a smooth submersion. Since
F = F̃ ◦ q is smooth, we conclude by means of the characteristic property for
smooth submersions that F̃ is smooth.

As a result, F̃ is an injective Lie group homomorphism, hence it has constant
rank, and so it’s also a smooth immersion. Thus imF = im F̃ is endowed with a
unique smooth structure making it into an immersed submanifold (and hence Lie
subgroup) of H. Moreover, we recall that a Lie group homomorphism is bijective
if and only if it’s a diffeomorphism, so F̃ is a Lie group isomorphism.

10 References
In this note we mostly followed John Lee’s Intro to Smooth Manifolds (pp. 150-170
and 540-560), filling in details to several exercises and problems along the way.
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